• Title/Summary/Keyword: Interferometry method

Search Result 301, Processing Time 0.024 seconds

Comparison of In-Plane Measurement of Phase-Shifting with Time-Average Method (위상이동법과 시간평균법의 면내변위 측정 비교)

  • Kim, Kyoung-Suk;Kim, Dong-Iel;Jung, Hyun-Chul;Kang, Ki-Soo;Lee, Chan-Woo;Yang, Seung-Pil;Jarng, Soon-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.53-58
    • /
    • 1999
  • Even I the Electronic Speckle Pattern Interferometry(ESPI) method that measure the strain of object within wavelength of light is less visibility than Holographic Interferometry(HI) method, the merits of application, convenience and time-save have made the method practical in industry. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement, due to irregular intensity and shake of phase. Recently, in order to solve this problem, phase shifting method have been proposed. In this method, the path of reference light in interference is shifted to make improvement in distinction and precision. But this method includes too many noise, caused by the problem of relationship between object and phase. Therefore, a method to reduce noise muse be introduced. In this paper, least square fitting method is proposed. As results, the phase-map is influenced by precise phase shifting and current of notes and speckle pattern obtained by phase shifting method is improved on the existing method driven from time-average method.

  • PDF

Optical Encryption based on Visual Cryptography and Interferometry (시각 암호와 간섭계를 이용한 광 암호화)

  • 이상수;서동환;김종윤;박세준;신창목;김수중;박상국
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.126-127
    • /
    • 2000
  • In this paper, we proposed an optical encryption method based in the concept of visual cryptography and interferometry. In our method a secret binary image was divided into two sub-images and they were encrypted by 'XOR' operation with a random key mask. Finally each encrypted image was changed into phase mask. By interference of these two phase masks the original image was obtained. Compared with general visual encryption method, this optical method had good signal-to-noise ratio due to no need to generate sub-pixels like visual encryption.

  • PDF

Tow-dimensional Strain Analysis by Fourier Transform Moire Interferometry (Fourier 변환 모아레 간섭에 의한 이차원적 변형률 해석)

  • Park, T.W.;Shimada, T.;Morimoto, Y.;Han, E.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.1
    • /
    • pp.16-24
    • /
    • 1992
  • Moire interferometry using a diffraction grating and a laser is a powerful technique for analizing small deformation of a specimen. In the method, the x and y-directional fringe patterns are obtained by using the x and y-directional sets of two beams. If the both sets of two beams are simultaneously incident to the specimen, the x and y-directional fringe patterns are super imposed. In this case, it is difficult to separate each directional fringe pattern. Therefore each fringe pattern has been separately recorded by selecting each set of two beams. In order to analyze a two-dimensional strain changing with time, Moire interferometry using the two-dimensional fourier transform method is proposed and the x and y-directional fringes are separated. By this method, the thermal deformation of a glass plate is analyzed.

  • PDF

The Measurement Method of Small Deformation by using Holographic Interferometry (홀로그래픽 산섭법을 이용한 미소변형 측정법)

  • 강영준;문상준;최장섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.273-278
    • /
    • 1993
  • Conventional measurement methods for non-destructive testing(NDT) in nuclear power plants other industrial plants have been performed as the methods of contact with objects to be inspect, but those methods have been taken relatively much time to be inspected. Holographic interferometry which is a non-contact optical measurement method using a coherent light can overcome these demerit, and also has an advantage that the quantitative measurement of small deformation for large areas can be accomplished at a time with high precision. In this paper the comparisons of the experimental results from holographic interferometry with those form the finite element method(FEM) and the analytical solutions of elastic equation are discussed.

  • PDF

Surface contouring using Electronic Speckle Pattern Interferometry (전자 스페클 패턴 간섭계를 이용한 형상 측정)

  • 김계성;유원재;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.397-401
    • /
    • 1995
  • ESPI(Electronic Speckle Pattern Interfermetry) is an optical technique to measure surface deforamtion of engineering components and materials in industrial ares. This optical method is capable of providing full-field results with high spatial resolution, high speed and is the non-contact technique. One of important application aspects using electronic speckle pattern interferometry is to generate contours of a diffuse object in order to provide data for 3-D shape analysis and topography measurement. The contouring method by modified dual-beam speckle pattern interferometry is proposed. We introduce a shift of the illumination beams through optical fiber in order to obtain the contour fringe patterns. The speckle pattern correlation technique is suitable for providing measurement range from millimeters to several centimeters. The complete geometric analysis of the contoretical and experimental results are obtained.

  • PDF

A Study on the Measurement of In-plane Deformations by using Electronic Speckle Pattern Interferometry and Finite Element Method (전자 스페클 간섭법과 유한요소법을 이용한 면내변형의 측정에 관한 연구)

  • Kang, Hyung-Soo;Cho, Ki-Hyon;Kim, Hong-suk;chung, Hyung-kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2002
  • In-plane ESPI(Electronic Speckle Patten Interferometry)was devised to measure in~plane defamation and rotation of a specimen with laser in this study. The conventional measuring methods of surface deformations such as the strain gauge have many demerits because they are contact and point-to-point measuring ones. But that ESPI is noncontact, nondestructive and whole field measuring method can overcome previous disadvantages. We used ESPI which is sensitive to in-plane displacement for measuring in-plane deformations of a disk. First of all, the system calibration was done due to an in-plane rotation before getting deformations of a disk. Finally we showed good agreement between theexperiment results and those of the FEA(Finit Element Analysis).

  • PDF

A Study on Measurement and Analysis of In-Plane Deformations by Using Laser Speckle Interferometry (I) (레이저 스페클 간섭법을 이용한 면내 변형 측정 및 해석에 대한 연구 (I))

  • 강영준;노경완;강형수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.121-129
    • /
    • 1998
  • In-plane ESPI(Electronic Speckle Pattern Interferometry) was devised to measure in-plane deformations and rotation of a specimen with laser in this study. ESPI is a optical measuring method to be able to measure the deformations of engineering components and materials in industrial fields. The conventional measuring methods of surface deformations such as the strain gauge have many demerits because they are contact and point-to-point measuring ones. But that ESPI is noncontact, nondestructive and whole field measuring method can overcome previous disadvantages. We used ESPI which is sensitive to in-plane displacement for measuring in-plane deformations of a disk. And the 4-frame phase shifting method was used for the quantitative analysis. First of all, the system calibration was done due to an in-plane rotation before getting deformations of a disk. Finally we showed good agreement between the experiment results and those of the FEA(Finite Element Analysis).

  • PDF

Generating a True Color Image with Data from Scanning White-Light Interferometry by Using a Fourier Transform

  • Kim, Jin-Yong;Kim, Seungjae;Kim, Min-Gyu;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.408-414
    • /
    • 2019
  • In this paper we propose a method to generate a true color image in scanning white-light interferometry (SWLI). Previously, a true color image was obtained by using a color camera, or an RGB multichannel light source. Here we focused on acquiring a true color image without any hardware changes in basic SWLI, in which a monochrome camera is utilized. A Fourier transform method was used to obtain the spectral intensity distributions of the light reflected from the sample. RGB filtering was applied to the intensity distributions, to determine RGB values from the spectral intensity. Through color corrections, a true color image was generated from the RGB values. The image generated by the proposed method was verified on the basis of the RGB distance and peak signal-to-noise ratio analysis for its effectiveness.

Secure private key exchange method based on optical interferometry using biometric finger print (생체 지문을 이용한 광학 간섭계에 기반한 안전한 개인키 교환 기법)

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.42-46
    • /
    • 2021
  • A novel key exchange cryptographic method utilizing biometric finger print as a user's private key is proposed. Each unknown users' finger print is encrypted by optical phase-shifting interferometry principle and is changed into two ciphers, which are exchanged with the other party over a public communication network for secret key sharing. The transmitted ciphers generate a complex hologram, which is used to calculate a shared secret key for each user. The proposed method provides high security when applied to a secret key sharing encryption system.

Non-Destructive Evaluation of Separation and Void Defect of a Pneumatic Tire by Speckle Shearing Interferometry

  • Kim, Koung-Suk;Kang, Ki-Soo;Jung, Hyun-Chul;Ko, Na-Kyong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1493-1499
    • /
    • 2004
  • This paper describes the speckle shearing interferometry, a non-destructive optical method, for quantitative estimation of void defect and monitoring separation defect inside of a pneumatic tire. Previous shearing interferometry has not supplied quantitative result of inside defect, due to effective factors. In the study, factors related to the details of an inside defect are classified and optimized with pipeline simulator. The size and the shape of defect can be estimated accurately to find a critical point and also is closely related with shearing direction. The technique is applied for quantitative estimation of defects inside of a pneumatic tire. The actual traveling tire is monitored to reveal the cause of separation and the starting points. And also unknown void defects on tread are inspected and the size and shape of defects are estimated which has good agreement with the result of visual inspection.