• Title/Summary/Keyword: Interferometric Technique

Search Result 107, Processing Time 0.029 seconds

Application of JERS-1 SAR Interferometry to the Deformation of Mt. Baekdu Stratovolcano

  • Kim, S.W.;Jeong, H.S.;Won, J.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1073-1075
    • /
    • 2003
  • We apply the radar interferometry technique to JERS-1 SAR data sets for detection of slow surface deformation occurred in Mt. Baekdu for a 6-year period (from 1992 to 1998). A series of interferograms has been constructed, and they indicated slow uplift deformation around the volcano. However, it is not conclusive because most interferometric fringes correlate with topographic elevation. It is necessary to remove trophospheric effects in the future works.

  • PDF

Measurement of Highly Aspherical Surface using Computer Generated Holograms

  • Kim, Tae-hee;Choi, Soon-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • Interferometric metrology with a null CGH(computer-generated hologram) is presented for measuring highly aspheric surfaces used in a large screen projection television system with high accuracy. The cubic spline surface model which works in a single-pass configuration with a refractive index of object space 0 is used for designing a null CGH. A hybrid null corrector with plano-concave lens in front of a CGH is presented to make the CGH easier to fabricate. Experimental results are presented to demonstrate the validity of the proposed technique.

A Review on Monitoring the Everglades Wetlands in the Southern Florida Using Space-based Synthetic Aperture Radar (SAR) Observations

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.377-390
    • /
    • 2017
  • Space-based Synthetic Aperture Radar (SAR) observations have been widely and successfully applied to acquire invaluable temporal and spatial information on wetlands, which are unique environments and regarded as important ecosystems. One of the best studied wetland area is Everglades, which is located in southern Florida, USA. As a World Heritage Site, the Everglades is the largest natural and subtropical wilderness in the United States. The Everglades wetlands have been threatened by anthropogenic activities such as urban expansion and agricultural development, as well as by natural processes, as sea level changes due to climate change. In order to conserve this unique wetland environment, various restoration plans have been implemented. In this review paper, we summarize the main studies using space-based SAR observations for monitoring the Everglades. The paper is composed of the following two sections: (1) review of backscattered amplitude analysis and observations, and (2) review of interferometric SAR (InSAR) analysis and applications. This study also provides an overview of a wetland InSAR technique and space-based SAR sensors. The goal of this review paper is to provide a comprehensive summary of space-based SAR monitoring of wetlands, using the Everglades wetlands as a case study.

Vibration Measurement and Flutter Suppression Using Patch-type EFPI Sensor System

  • Kim, Do-Hyung;Han, Jae-Hung;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • An optical phase tracking technique for an extrinsic Fabry-Perot interferometer (EFPI) is proposed in order to overcome interferometric non-linearity. Basic idea is utilizing strain-rate information, which cannot be easily obtained from an EFPI sensor itself. The proposed phase tracking system consists of a patch-type EFPI sensor and a simple on-line phase tracking logic. The patch-type EFPI sensor comprises an EFPI and a piezoelectric patch. An EFPI sensor itself has non-linear behavior due to the interferometric characteristics, and a piezoelectric material has hysteresis. However, the composed patch-type EFPI sensor system overcomes the problems that can arise when they are used individually. The dynamic characteristics of the proposed phase tracking system were investigated, and then the patch-type EFPI sensor system was applied to the active suppression of flutter, dynamic aeroelastic instability, of a swept-back composite plate structure. The proposed system has effectively reduced the amplitude of the flutter mode, and increased flutter speed.

Grounding Line Change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 Observed by using DDInSAR

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Grounding line of a glacier or ice shelf where ice bottom meets the ocean is sensitive to changes in the polar environment. Recent rapid changes of grounding lines have been observed especially in southwestern Antarctica due to global warming. In this study, ERS-1/2 and Sentinel-1A Synthetic Aperture Radar (SAR) image were interferometrically acquired in 1996 and 2015, respectively, to monitor the movement of the grounding line in the western part of Ronne Ice Shelf near the Antarctic peninsula. Double-Differential Interferometric SAR (DDInSAR) technique was applied to remove gravitational flow signal to detect grounding line from the interferometric phase due to the vertical displacement of the tide. The result showed that ERS-1/2 grounding lines are almost consistent with those from Rignot et al. (2011) which used the similar dataset, confirming the credibility of the data processing. The comparison of ERS-1/2 and Sentinle-1A DDInSAR images showed a grounding line retreat of $1.0{\pm}0.1km$ from 1996 to 2015. It is also proved that the grounding lines based on the 2004 MODIS Mosaic of Antarctica (MOA) images and digital elevation model searching for ice plain near coastal area (Scambos et al., 2017), is not accurate enough especially where there is a ice plain with no tidal motion.

High resolution heterodyne interferometric technique with AOM for measuring the thermal expansion (음향광변조기를 이용한 고분해능의 헤테로다인 간섭식 열팽창 측정기술)

  • 최병일;이상현;김종철;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.530-536
    • /
    • 2002
  • The accurate measurements of thermal expansion coefficients is one of the most important techniques required not only in material science but also in industries. A high precision interferometric dilatometer, using acoustic optical modulator, has been constructed and its performance has been tested. The system consists of a double-path optical heterodyne interferometer and a radiant heating furnace. This provides highly accurate length measurement, and allows rapid heating and cooling method for the specimen. A three longitudinal mode frequency stabilized He-Ne laser, using the secondary beat frequency, is constructed. Its stability is found to be $5{\times}10^{-9}$. The uncertainty in the length measurement is estimated to be of nanometer order in the range between room temperature to 1100 K.

Real-Time Correction of Movement Errors of Machine Axis by Twyman-Green Interferometry (광위상 간섭을 이용한 이송축의 운동오차 실시간 보상)

  • 이형석;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3115-3123
    • /
    • 1993
  • This paper presents a real-time correction method of the movemont errors of a translatory precision machine axis. This method is a null-balances technique in which two plane mirrors are used to generate an interferometric fringe pattern utilizing the optical principles of TwymanGreen interferometry. One mirror is fixed on a reference frame, while the other is placed on the machine axis being supported by three piezoelectric actuators. From the fringe pattern, one translatory and two rotational error components of the machine axis are simultaneously detected by using CCD camera vision and image processing techniques. These errors are then independently suppressed by activating the peizoelectric actuators by real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with movement errors less than 10 nm in vertical straightness, 0.1 arcsec in pitch, and 0.06 arcsec in roll for 50mm travel by adopting the real-time correction method.

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

Study of Shearography Imaging for Quantity Evaluation Defects in Woven CFRP Composite Materials (직조 CFRP 복합재료 내부결함의 정량적 평가를 위한 Shearography 영상처리 기법 연구)

  • 최상우;이준현;이정호;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry(ESPI) is one of optical technique to measure displacement precisely, uses CCD camera to show result image in real time. General ESPI system measures in-plane or out-of-plane displacement. Shearography is one of electronic speckle pattern interferometric methods which allow full-field observation of surface displacement derivatives and it is robust in vibration. The shearography provides non-contacting technique of evaluating defects nondestructively. In this study, the shearography was used to evaluate defects in Carbon Fiber Reinforced Plastic(CFRP). Various sizes of artificial defects were embedded in various depths of woven CFRP plate. Effects due to the variation of size and depth of defects were evaluated in this study.

  • PDF

A Study On Vibration Characteristics Of Plate with Crack by ESPI Method (ESPI를 이용한 결함이 있는 평판의 진동특성에 관한 연구)

  • 박찬주;김경석;홍진후;장호섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.239-242
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry(ESPI) was proposed in the 1970's as a method of producing the interferogram without using traditional holographic technique. ESPI is more faster than Holography method, because the interferometric image is recorded and updated by the video camera every 1/30 second and whold-field inspection possibly. In this study using a non-contact optical technique that is suited for in-plane and out-of-plane deformation measurement. Thin plate with crack was analyzed by ESPI to determine the characteristics of vibration mode shape and natural frequency. Also, results of the experiment were compared with Finite Element Method(FEM).

  • PDF