• Title/Summary/Keyword: Interference-limited system

Search Result 203, Processing Time 0.025 seconds

On Power Allocation Schemes for Bi-directional Communication in a Spectrum Sharing-based Cognitive Radio System

  • Kim, Hyungjong;Wang, Hanho;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.285-297
    • /
    • 2014
  • This paper presents the results of an investigation into bi-directional communication in spectrum sharing-based cognitive radio (Bi-CR) systems. A Bi-CR system can increase the spectral efficiency significantly by sharing the spectrum and through the bi-directional use of spatial resources for two-way communication. On the other hand, the primary user experiences more interference from the secondary users in a Bi-CR system. Satisfying the interference constraint by simply reducing the transmission power results in performance degradation for secondary users. In addition, secondary users also experience self-interference from echo channels due to full duplexing. These imperfections may weaken the potential benefits of the Bi-CR system. Therefore, a new way to overcome these defects in the Bi-CR system is needed. To address this need, this paper proposes some novel power allocation schemes for the Bi-CR system. This contribution is based on two major analytic environments, i.e., noise-limited and interference-limited environments, for providing useful analysis. This paper first proposes an optimal power allocation (OPA) scheme in a noise-limited environment and then analyzes the achievable sum rates. This OPA scheme has an effect in the noise-limited environment. In addition, a power allocation scheme for the Bi-CR system in an interference-limited environment was also investigated. The numerical results showed that the proposed schemes can achieve the full duplexing gain available from the bi-directional use of spatial resources.

Performance Analysis of Nonlinear Energy-Harvesting DF Relay System in Interference-Limited Nakagami-m Fading Environment

  • Cvetkovic, Aleksandra;Blagojevic, Vesna;Ivanis, Predrag
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • A decode-and-forward system with an energy-harvesting relay is analyzed for the case when an arbitrary number of independent interference signals affect the communication at both the relay and the destination nodes. The scenario in which the relay harvests energy from both the source and interference signals using a time switching scheme is analyzed. The analysis is performed for the interference-limited Nakagami-m fading environment, assuming a realistic nonlinearity for the electronic devices. The closed-form outage probability expression for the system with a nonlinear energy harvester is derived. An asymptotic expression valid for the case of a simpler linear harvesting model is also provided. The derived analytical results are corroborated by an independent simulation model. The impacts of the saturation threshold power, the energy-harvesting ratio, and the number and power of the interference signals on the system performance are analyzed.

Comparisons of Diversity Techniques for OFDM Systems in Interference-Limited Environments (간섭 제한적인 환경에서의 OFDM 시스템의 다이버시티 기술의 비교)

  • Rim, Min-Joong;Kim, Hong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1043-1052
    • /
    • 2008
  • This paper compares the performances with space time coding and cyclic delay diversity techniques for OFDM systems in interference-limited environments. While a communication system usually use a diversity technique to improve its own performance, it is also necessary to consider the interference effects to other users as well if the system is operated in interference-limited environments. When there is no interference from or to other users, space time coding technique results in better performance than cyclic delay diversity. However, cyclic delay diversity can be better than space time coding if interferences to other users are considered.

A Comparative Study on Interference-Limited Two-Way Transmission Protocols

  • Xia, Xiaochen;Zhang, Dongmei;Xu, Kui;Xu, Youyun
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.351-363
    • /
    • 2016
  • This paper investigates the performance of interference-limited two-way transmission protocols in the Rayleigh fading channels. New lower bound of outage probability and approximate expression of bit error rate (BER) for three-phase two-way relaying (3P-TWR) protocol are derived in closed-form. These expressions are valid for arbitrary signal-to-noise ratio values, numbers of co-channel interferers and amajority of modulation formats employed in the practical system. Then a comparative study is developed for the performance of three two-way transmission protocols, i.e., direct transmission (DT) protocol, two-phase two-way relaying (2P-TWR) protocol and 3P-TWR protocol based on the asymptotic expressions of outage probability and BER. On the basis of the theoretical results, the thresholds on the strength (variance) of direct channel and target rate for the relative performance of different protocols are obtained and the effect of interferences at the terminal and relay on the relative performance is analyzed. The results present key insights on how to choose proper two-way transmission protocol with the knowledge of fading channels, required date rate and modulation format to optimize the system performance in the practical interference-limited scenarios. Simulation results are presented to validate the theoretical analysis.

Cooperative Limited Feedback Precoding in Interference-Limited MIMO Networks (간섭 제한적인 MIMO 환경에서의 협력적인 제한적 피드백 프리코딩)

  • Yoon, Jung-Min;Lee, Jong-Ho;Kwak, Young-Woo;Choi, Jeong-Sik;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.276-285
    • /
    • 2011
  • In this paper, we propose new cooperative precoder selection technique for interference limited MIMO networks. Our proposed method gives weighting to precoders in the codebook according to each precoder's performance priority. By applying our proposed method to precoder selection sequence, performance of entire system can be improved in terms of sumrate, stability, and feedback rate.

Limited Feedback Performance Aanlysis of Regularized Joint Spatial Division and Multiplexing Scheme (정규화된 결합 공간 분할 다중화 기법의 제한된 피드백 환경에서 성능 분석)

  • Song, Changick
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.420-424
    • /
    • 2021
  • The massive MIMO system, which is a core technology of 5G communication systems, has a problem that it is difficult to implement in a frequency division duplex system based on limited channel feedback because a large amount of channel information is required at the transmitting end. In order to solve this problem, the Joint Spatial Division and Multiplexing (JSDM) technique that dramatically reduces the channel information requirement by removing interference between the user groups using channel correlation information that does not change for a long time has been proposed. Recently, a regularized JSDM technique has been proposed to further improve performance by allowing residual interference between the user groups. However, such JSDM-related studies were mainly designed to focus on inter-group interference cancellation, and thus performance analysis was not performed in a more realistic environment assuming limited feedback in the intra-group interference cancellation phase. In this paper, we analyze the performance of the JSDM and regularized JSDM techniques according to the number of groups and users in a limited feedback environment, and through the simulation results, demonstrate that the regularized JSDM technique shows a more remarkable advantage compared to the existing JSDM in a limited feedback environments.

Interference Effects of Low-Power Devices on the UE Throughput of a CR-Based LTE System

  • Kim, Soyeon;Sung, Wonjin
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.353-359
    • /
    • 2014
  • Recently, the use of mobile devices has increased, and mobile traffic is growing rapidly. In order to deal with such massive traffic, cognitive radio (CR) is applied to efficiently use limited-spectrum resources. However, there can be multiple communication systems trying to access the white space (unused spectrum), and inevitable interference may occur to cause mutual performance degradation. Therefore, understanding the effects of interference in CR-based systems is crucial to meaningful operations of these systems. In this paper, we consider a long-term evolution (LTE) system using additional spectra by accessing the TV white space, where low-power devices (LPDs) are licensed primary users, in addition to TV broadcasting service providers. We model such a heterogeneous system to analyze the co-existence problem and evaluate the interference effects of LPDs on LTE user equipment (UE) throughput. We then present methods to mitigate the interference effects of LPDs by 'de-selecting' some of the UEs to effectively increase the overall sector throughput of the CR-based LTE system.

Intentional GNSS Interference Detection and Characterization Algorithm Using AGC and Adaptive IIR Notch Filter

  • Yang, Jeong Hwan;Kang, Chang Ho;Kim, Sun Young;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • A Ground Based Augmentation System (GBAS) is an enabling technology for an aircraft's precision approach based on a Global Navigation Satellite System (GNSS). However, GBAS is vulnerable to interference, so effective GNSS interference detection and mitigation methods need to be employed. In this paper, an intentional GNSS interference detection and characterization algorithm is proposed. The algorithm uses Automatic Gain Control (AGC) gain and adaptive notch filter parameters to classify types of incoming interference and to characterize them. The AGC gain and adaptive lattice IIR notch filter parameter values in GNSS receivers are examined according to interference types and power levels. Based on those data, the interference detection and characterization algorithm is developed and Monte Carlo simulations are carried out for performance analysis of the proposed method. Here, the proposed algorithm is used to detect and characterize single-tone continuous wave interference, swept continuous wave interference, and band-limited white Gaussian noise. The algorithm can be used for GNSS interference monitoring in an excessive Radio Frequency Interference environment which causes loss of receiver tracking. This interference detection and characterization algorithm will be used to enhance the interference mitigation algorithm.

Interference-Limited Dynamic Resource Management for an Integrated Satellite/Terrestrial System

  • Park, Unhee;Kim, Hee Wook;Oh, Dae Sub;Ku, Bon-Jun
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.519-527
    • /
    • 2014
  • An integrated multi-beam satellite and multi-cell terrestrial system is an attractive means for highly efficient communication due to the fact that the two components (satellite and terrestrial) make the most of each other's resources. In this paper, a terrestrial component reuses a satellite's resources under the control of the satellite's network management system. This allows the resource allocation for the satellite and terrestrial components to be coordinated to optimize spectral efficiency and increase overall system capacity. In such a system, the satellite resources reused in the terrestrial component may bring about severe interference, which is one of the main factors affecting system capacity. Under this consideration, the objective of this paper is to achieve an optimized resource allocation in both components in such a way as to minimize any resulting inter-component interference. The objective of the proposed scheme is to mitigate this inter-component interference by optimizing the total transmission power - the result of which can lead to an increase in capacity. The simulation results in this paper illustrate that the proposed scheme affords a more energy-efficient system to be implemented, compared to a conventional power management scheme, by allocating the bandwidth uniformly regardless of the amount of interference or traffic demand.

D2D Utility Maximization in the Cellular System: Non Cooperative Game Theoretic Approach

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.79-85
    • /
    • 2019
  • We investigate the D2D utility maximization in the cellular system. We focus on the non cooperative game theoretic approach to maximize the individual utility. Cellular system's perspective, interference from the D2D links must be limited to protect the cellular users. To accommodate this interference issue, utility function is first defined to control the individual D2D user's transmit power. More specifically, utility function includes the pricing which limits the individual D2D user's transmit power. Then, non cooperative power game is formulated to maximize the individual utility. Distributed algorithm is proposed to maximize the individual utility, while limiting the interference. Convergence of the proposed distributed algorithm is verified through computer simulation. Also the effect of pricing factor to SIR and interference is provided to show the performance of the proposed distributed algorithm.