• Title/Summary/Keyword: Interference protection ratio

Search Result 41, Processing Time 0.027 seconds

A Study on Frequency Coordination between Fixed Wireless System and Mobile Base Station in Urban or Sub-urban Area (도심 또는 부도심에서 고정무선시스템과 이동기지국 간의 주파수 조정에 대한 연구)

  • Suh, Kyoung-Whoan;Park, Young-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.41-49
    • /
    • 2017
  • Theoretical modelling and computational results for frequency coordination are presented over mobile base station and fixed wireless systems in urban or sub-urban area. Computational results with key parameters needed for interference analysis are performed and discussed in terms of system characteristics, propagation model, protection ratio, frequency dependent rejection, and discrimination angle with signal-interference plane. Based upon minimum coupling loss methodology, calculated interference powers of victim receiver for assumed system parameters are compared with maximum allowable interference power derived from protection ratio as functions of discrimination angle and distance including height-gain model in urban or sub-urban area. The proposed method is applicable for technical analysis on co-existence or interoperability for the various wireless systems, mandatory for frequency coordination or reallocation process.

Analysis of Interference Protection Criteria for Interoperability of Radar Systems (레이다 시스템 상호 간 운용을 위한 간섭 보호 기준 분석)

  • Kim, Jung;Jung, Jung-Soo;Kwag, Young-Kil;Kim, Jin-Goog;Jeon, Young-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.434-441
    • /
    • 2014
  • Recently, a mutual interference threat has been increasing among the radar systems due to the rapid growth of the military radar operation. In this paper, the radar interference protection criteria is presented for interoperability in terms of the radar coverage and target detection probability in association with the international recommendation on the interference spectrum by ITU-R. The required criteria for the minimum allowable interference is also presented in terms of INR. In order to ensure the maximum detection probability of the radar under the mutual interference situation, only 5 % of detection range loss is allowed for the case of INR of -6 dB, and required SNR is presented at each INR in terms of the detection range and detection probability. This result will be useful for establishing the interference protection criteria in the combined military radar systems.

An Analysis of Radio Interference in the Rain Radars (강우 레이더 전파간섭 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The interference among the rain radars and interference in the adjacent wireless station due to the spurious signals from the rain radar were analyzed in this paper. The rain radar measures the rain intensity using S-band signal. The measured data are utilized in forecasting the rainfall. The interference among the rain radars or in the adjacent wireless stations may be caused by the operation with low elevation angle and the high output power. Based on the propagation analysis of S band signal and the deduced interference protection ratio of rain radar, the interference due to the rain radar are analyzed. Also, the radiation spectrum characteristics of a rain radar are deduced from the caused interference effects by the spurious signals of the rain radar. To minimize the interference effects for adjacent wireless stations, it is required to get the rejection characteristics of spurious signals above 105 dB. In viewpoints of interference for rain radars, it is necessary to operate the rain radar with a different PRF and operation time opposite to adjacent rain radars.

A Derivation of Comprehensive Protection Ratio and Its Applications for Microwave Relay System Networks

  • Suh Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • This paper suggests an efficient and comprehensive algorithm of the protection ratio derivation and illustrates some calculated results applicable to the initial planning of frequency coordination in the fixed wireless access networks. The net filter discrimination associated with Tx spectrum mask and overall Rx filter characteristic has been also examined to show the effect of the adjacent channel interference. The calculations for co-channel and adjacent channel protection ratios are performed for the current microwave frequency band of 6.7 GHz including Tx spectrum mask and Rx filter response. According to results, fade margin and co-channel protection ratio reveal 41.4 and 75.2 dB, respectively, for 64-QAM and 60 km at BER $10^{-6}$. It is shown that the net filter discrimination with 40 MHz channel bandwidth provides 28.9 dB at the first adjacent channel, which yields 46.3 dB of adjacent channel protection ratio. In addition, the protection ratio of 38 GHz radio relay system is also reviewed for millimeter wave band applications. The proposed method gives some advantages of an easy and systematic extension for protection ratio calculation and is also applied to frequency coordination in fixed millimeter wave networks.

A Study on A Mathematical Formulation of Protection Ratio and Its Calculation for Fixed Radio Relay System with Diversity (다이버시티를 갖는 고정 무선 중계 시스템에 대한 보호비의 수학적 표현과 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.358-367
    • /
    • 2006
  • In this paper, a mathematical formulation of protection ratio and its calculation method are suggested for a radio relay system with diversity techniques. The analysis of protection ratio and its physical meaning have been performed for the space or frequency diversity system, and in particular protection ratios are reviewed in terms of the parameters of diversity improvement factor, which comprises antenna gain, separation distance between antennas, frequency and its difference between carriers, and distance. As one of simulated results, the co-channel protection ratio of 60 dB is obtained for the space diversity system regarding 6.2 GHz, 60 km, 64-QAM, and 25 m between antennas, which gives 15 dB less than the co-channel protection ratio of the non-space diversity system. In addition, the co-channel protection ratio for the frequency diversity system gives 64 dB in case of frequency offset of 0.5 GHz under the same conditions as the space diversity system, which brings about 11 dB less than the co-channel protection ratio of non-frequency diversity system. In consequency, it is interesting to note that the space diversity system is less sensitive to interference in comparison to the frequency diversity system and provides better quality of service for a given interference.

Securing Method for Available Frequency by Changing Adaptive Protection Ratio in Adjacent Station Interference Environment of FM Broadcast (FM방송의 인접국 간섭환경에서 적응적 혼신보호비 변경에 의한 가용주파수 확보 방안)

  • Kim, Gi-Young;Ryu, Heung-Gyoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.490-500
    • /
    • 2011
  • The channels of domestic FM broadcast are needed to provide various kinds of new broadcasting services. However, available channels are limited and saturated. The channel interval of FM broadcast is changed from 200 kHz to 100 kHz to maximize utilization efficiency of scarce broadcast spectrum at all over the world. Also, there are many researches such as IBOC(In Band On Channel) and DRM+(Digital Radio Mondial+) that is to allocate the digital signal beside analog bandwidth. But output power is decrease to avoid interference between adjacent radio stations. In this paper, we analyzes the problems of the protection ratio which is decided in 1986 and we propose method to improve about 7~10dB significantly the protection ratio according to the recent DSP(Digital Signal Processing) techniques without loss of both transmission power and broadcast quality. In addition, we examined the possibility of securing two times available channels by reducing minimum frequency interval from 800 kHz to 400 kHz or 600 kHz in the equal site.

A Study on Calculation of NFD and Protection Ratio of Fixed Radio Relay System for Analyzing Adjacent Channel Interference (인접 채널 간섭 분석을 위한 고정 무선 중계 시스템의 NFD 및 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1138-1146
    • /
    • 2005
  • This paper makes a study of a formulation of net filter discrimination(NFD) and its computation for analyzing adjacent channel interference and suggests a systematic algorithm for calculating protection ratios of co-channel and adjacent channel applicable to frequency coordination in the fixed radio relay networks. It is shown that adjacent channel protection ratio can be derived from two factors: One is NFD depending upon receiver filter characteristic as well as transmitter spectrum mask and the other is co-channel protection ratio given by a function of fade margin, modulation scheme, and allowable interference. Actually to show the computing procedure from transmitter spectrum mask and receiver filter characteristic, NFD has been obtained for channel bandwidth of 29.65 and 40 MHz at 6.2 and 6.7 GHz band, respectively. According to the results, NFDs at the first adjacent channel of 29.65 and 40 MHz provide 27.4 and 28.9 dB, respectively. From these data, adjacent channel protection ratios corresponding to each channel bandwidth yield 47.5 and 46.3 dB for a given 64-QAM and 60 km. The proposed method gives some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter radio relay networks.

Methodology of Interference Analysis Between TACAN/DME Beacons and Ground-based Link-16 Terminals (TACAN/DME 비콘과 Link-16 지상국 간의 간섭분석 방법)

  • Suh, Kyoung-Whoan
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • In this paper, the method of interference analysis and its simulation have been suggested for the frequency sharing between aeronautical radio navigation systems and Link-16 platforms. In order to get the criteria for interoperability, the algorithm of interference analysis and protection ratio are derived to assure frequency sharing. Also the receiving power of wireless system has been illustrated with the help of radio propagation model of ITU-R Rec. P.1546 in VHF-UHF band. Finally the required receiving power or separation distance between DME/TACAN beacons and Link-16 ground station terminals has been considered based on system link budget in terms of evaluating interoperability as well as actual applications. As a result, if the suggested interference analysis and test set-up are applied to the field trial, it will lead to easy means to make a decision on interoperability over the existing incumbent systems.

Derivation of Protection Ratio and its Calculation for Microwave Relay System Based upon Composite Fade Margin and Availability (합성 페이드 마진 및 가용율에 근거한 M/W 중계 시스템의 보호비 유도 및 계산)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.341-350
    • /
    • 2007
  • In this paper, the derivation of protection ratio is newly proposed for the detailed planning of frequency coordination in microwave relay networks, and computed results for protection ratio of co-channel and adjacent channel are illustrated over the actual system and its frequency. It is shown that the suggested method based upon availability prediction can be expressed in terms of composite fade margin, interference-to-noise ratio(I/N), net filter discrimination, and system parameters. According to results, for 6.7 GHz, 60 km, 64-QAM, and I/N= -6 dB at BER $10^{-6}$, composite fade margin and co-channel protection ratio provide 25.5 and 50.7 dB, respectively. Also, net filter discrimination and adjacent channel protection ratio are obtained as 26.3 and 24.4 dB, respectively, at the first adjacent channel of 40 MHz. The proposed method provides some merits in computing protection ratio for microwave relay networks in view of an easy extension and practical applications considering more detailed and various system parameters.

Performance Evaluation and Protection Ratio Setting of Satellite DMB System (위성 DMB 시스템 성능 분석 및 보호비 설정)

  • Song Young-Joon;Ahn Do-Seob;Oh Woo-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.880-887
    • /
    • 2004
  • In this paper we analyze the satellite DMB system E using CDM/QPSK transmission system in 2,630~2,655 MHz(25 MHz) bandwidth by computer simulation. Based on this result, we propose the protection ratio analysis and values to guarantee the Performance of the satellite DMB system E from the interference of CATV using the same spectrum. As a result, we confirmed that the protection ratio between DMB and wireless CATV should be guaranteed -16.3 dB in AWGN channel and -11.3 dB in Rician Fading(Channel model A) channel. These research results can be important fundamental material for the commercialization of satellite DMB system.