• Title/Summary/Keyword: Interference probability

Search Result 442, Processing Time 0.022 seconds

Analysis of Interference Probability according to Distance between Communication Systems in Co-channel (통신시스템간 동일채널에서 단말간 이격거리에 따른 간섭확률 분석)

  • Cho, Ju-Phil;Lee, Il-Kyoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2307-2312
    • /
    • 2011
  • In this paper, we analyze the interference probability according to distance between mobile stations as a parameter which is be used for analysis for co-existing in co-channel of different systems. In order to consider interfering between each systems, we analyze two cases. First, WiBro is an interfering transmitter and WLAN is a victim receiver. Second, WLAN is an interfering transmitter and WiBro is a victim receiver. When interfering transmitter is WiBro and WLAN, interference probability according to distance between systems is analyzed by setting transmit power of 25 and 23 dBm, respectively. These simulation results can be applied into criteria data for channel co-existing issue in real field.

Analysis of Interference Protection Criteria for Interoperability of Radar Systems (레이다 시스템 상호 간 운용을 위한 간섭 보호 기준 분석)

  • Kim, Jung;Jung, Jung-Soo;Kwag, Young-Kil;Kim, Jin-Goog;Jeon, Young-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.434-441
    • /
    • 2014
  • Recently, a mutual interference threat has been increasing among the radar systems due to the rapid growth of the military radar operation. In this paper, the radar interference protection criteria is presented for interoperability in terms of the radar coverage and target detection probability in association with the international recommendation on the interference spectrum by ITU-R. The required criteria for the minimum allowable interference is also presented in terms of INR. In order to ensure the maximum detection probability of the radar under the mutual interference situation, only 5 % of detection range loss is allowed for the case of INR of -6 dB, and required SNR is presented at each INR in terms of the detection range and detection probability. This result will be useful for establishing the interference protection criteria in the combined military radar systems.

System-Level Simulation for Efficient Displacement of Base Station Antennas for CDMA Uplink System in Urban Microcells (도심 마이크로셀에서 CDMA 시스템을 위한 효율적인 기지국 배치를 위한 모의실험)

  • Min, Seung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.517-525
    • /
    • 2008
  • In this paper, we cary out system level simulations to investigate the effect of cell shape(i.e., different base station displacements in the two directions defined by the street grid) on minimizing transmitter power, interference power, and blocking probability for CDMA system in urban microcellular environments. In urban microcell, path loss to the base station depends on the orientation of the street where the mobile is located. Interference from mobile stations to the base station in the reference cell is considered up to second tier. The wrap around method is used to include the second tier interference with realistic computational complexity without reducing the accuracy of interference calculations. The investigation shows that the transmitter power, interference power, and blocking probability in a cell can be reduced by proper selection of the efficient cell shape.

Estimation of Probability Distribution of L-Band Interference Environment Based on Field Measurement Data (전파 측정 데이터 기반 L 대역 간섭 환경 확률분포 추정)

  • Oh, Janghoon;Kim, Jong-Sung;Yoon, Dongweon;Park, Namhyoung;Choi, Hyogi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.22-28
    • /
    • 2017
  • In modern electronic warfare, a variety of devices are being operated in the fields for the purposes of communication and surveillance. Therefore, if such devices work in the same band, interference may occur and affect each other. Regarding L-band in which various devices including radar systems are operating, interference from existing devices may affect new ones in the band. In this paper, we estimate a probability distribution of the interference environment in L-band from the selected measurement data, which is fundamental for the mathematical analysis. After selecting the candidates of probability distribution, we suggest the best one from the group. The results of this study are expected to be utilized as fundamental data for the mathematical approach to the L-band interference environment.

Outage Probability Analysis of Macro Diversity Combining Based on Stochastic Geometry (매크로 다이버시티 결합의 확률 기하 이론 기반 Outage 확률 분석)

  • Zihan, Ewaldo;Choi, Kae-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.187-194
    • /
    • 2014
  • In this paper, we analyze the outage probability of macro diversity combining in cellular networks in consideration of aggregate interference from other mobile stations (MSs). Different from existing works analyzing the outage probability of macro diversity combining, we focus on a diversity gain attained by selecting a base station (BS) subject to relatively low aggregate interference. In our model, MSs are randomly located according to a Poisson point process. The outage probability is analyzed by approximating the multivariate distribution of aggregate interferences on multiple BSs by a multivariate lognormal distribution.

Study on Efficient Frequency Guard Band Decision Rule for Interference Avoidance

  • Park, Woo-Chul;Kim, Eun-Cheol;Kim, Jin-Young;Kim, Jae-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.182-187
    • /
    • 2009
  • When we assign frequency resources to a new radio service, the existing services need not to be interfered with by the new service. Therefore, when we make a frequency assignment, a guard band is necessary to separate adjacent frequency bands so that both can transmit simultaneously without interfering with each other. In this paper, we propose an efficient frequency guard band decision rule for avoiding interference between radio services. The guard band is established based on the probability of interference in the previously arranged scenario. The interference probability is calculated using the spectrum engineering advanced Monte Carlo(MC) analysis tool(SEAMCAT). After applying the proposed algorithm to set up the frequency guard band, we can decide on the guard band appropriately because the result satisfies the predefined criterion.

An Intra-Wireless Vessel Communications Using Analysis of Interference Probability between Radio Devices (무선기기간 간섭확률분석의 Intra-Wireless 선박 통신 적용)

  • Kim, Seong-Kweon;Kim, Dong Ho;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.402-407
    • /
    • 2013
  • In this paper, we consider an interference scenario and interference simulation method of intra-wireless vessel communications using SEAMCAT (Spectrum Engineering Advanced Monte-Carlo Analysis) simulator. The interference between electromagnetic equipment and low power radio apparatus can deteriorate a stability of vessel system and it is necessary to analyze the interference probability between radio devices. The proposed simulation method in the 13.56MHz ISM frequency band shows that the interference effect can be minimized when the distance between the devices is greater than 4.7m and 2.7m in case that the victim receiver (VR) are RFID and remote control(RC) toy, respectively. The proposed interference scenario and simulation method are expected to be helpful in the interference probability analysis and regulation policy in the ISM frequency band.

Interference and Sink Capacity of Wireless CDMA Sensor Networks with Layered Architecture

  • Kang, Hyun-Duk;Hong, Heon-Jin;Sung, Seok-Jin;Kim, Ki-Seon
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • We evaluate the sink capacity of wireless code division multiple access (CDMA) sensor networks with layered architecture. We introduce a model of interference at a sink considering two kinds of interference: multiple access interference (MAI) and node interference (NI). We also investigate the activity of sensor nodes around the sink in relation to gathering data under a layered architecture. Based on the interference model and the activity of sensor nodes around the sink, we derive the failure probability of the transmission from a source node located one hop away from the sink using Gaussian approximation. Under the requirement of 1% failure probability of transmission, we determine the sink capacity, which is defined as the maximum number of concurrent sensor nodes located one hop away from the sink. We demonstrate that as the node activity of the MAI decreases, the variation of the sink capacity due to the node activity of the NI becomes more significant. The analysis results are verified through computer simulations.

  • PDF

Mutual Interference on Mobile Pulsed Scanning LIDAR

  • Kim, Gunzung;Eom, Jeongsook;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.43-62
    • /
    • 2017
  • Mobile pulse scanning Light Detection And Ranging (LIDAR) are essential components of intelligent vehicles capable of autonomous travel. Obstacle detection functions of autonomous vehicles require very low failure rates. With the increasing number of autonomous vehicles equipped with scanning LIDARs to detect and avoid obstacles and navigate safely through the environment, the probability of mutual interference becomes an important issue. The reception of foreign laser pulses can lead to problems such as ghost targets or a reduced signal-to-noise ratio. This paper will show the probability that any two scanning LIDARs will interfere mutually by considering spatial and temporal overlaps. We have conducted four experiments to investigate the occurrence of the mutual interference between scanning LIDARs. These four experimental results introduced the effects of mutual interference and indicated that the interference has spatial and temporal locality. It is hard to ignore consecutive mutual interference on the same line or the same angle because it is possible the real object not noise or error. It may make serious faults because the obstacle detection functions of autonomous vehicle rely on heavily the scanning LIDAR.

Cooperative Relaying with Interference Cancellation for Secondary Spectrum Access

  • Dai, Zeyang;Liu, Jian;Long, Keping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2455-2472
    • /
    • 2012
  • Although underlay spectrum sharing has been shown as a promising technique to promote the spectrum utilization in cognitive radio networks (CRNs), it may suffer bad secondary performance due to the strict power constraints imposed at secondary systems and the interference from primary systems. In this paper, we propose a two-phase based cooperative transmission protocol with the interference cancellation (IC) and best-relay selection to improve the secondary performance in underlay models under stringent power constraints while ensuring the primary quality-of-service (QoS). In the proposed protocol, IC is employed at both the secondary relays and the secondary destination, where the IC-based best-relay selection and cooperative relaying schemes are well developed to reduce the interference from primary systems. The closed-form expression of secondary outage probability is derived for the proposed protocol over Rayleigh fading channels. Simulation results show that, with a guaranteed primary outage probability, the proposed protocol can achieve not only lower secondary outage probability but also higher secondary diversity order than the traditional underlay case.