• Title/Summary/Keyword: Interference power

Search Result 1,721, Processing Time 0.028 seconds

Characteristics of TV Ghost Interference from Extra High Voltage Transmission Line (초고압 송전선로에 의한 TV Ghost 장해 발생 특성)

  • Ju, Mun-No;Yang, Gwang-Ho;Lee, Dong-Il;Sin, Gu-Yong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.412-417
    • /
    • 2000
  • TV ghost interference can be described as passive interference by the conducting part of transmission lines. In order to survey this interference from large-sized overhead EHV (extra high voltage) transmission line, TV reception quality was measured in the vicinity of that before and after construction. Instrumentation system was composed of ghost analyzer, TV received field intensity meter, VHF/UHF antennas, TV monitor and so on. The system is installed inside the vehicle. TV field intensity and PDUR (Perceived Desired wave to Undersired wave Ratio) are measured to evaluate TV ghost by using the system and vehicle. As the results, the useful data, which can be used to evaluate the effect of TV ghost interference from transmission lines could be obtained. In this paper, it is shown that the range of TV ghost interference from transmission lines can vary according to the frequency of TV electromagnetic wave, an incidence angle to the line and the other conditiions. At present, we are making efforts to establish a PDUR guideline for transmission lines.

  • PDF

Clustering Based Adaptive Power Control for Interference Mitigation in Two-Tier Femtocell Networks

  • Wang, Hong;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1424-1441
    • /
    • 2014
  • Two-tier femtocell networks, consisting of a conventional cellular network underlaid with femtocell hotspots, play an important role in the indoor coverage and capacity of cellular networks. However, the cross- and co-tier interference will cause an unacceptable quality of service (QoS) for users with universal frequency reuse. In this paper, we propose a novel downlink interference mitigation strategy for spectrum-shared two-tier femtocell networks. The proposed solution is composed of three parts. The first is femtocells clustering, which maximizes the distance between femtocells using the same slot resource to mitigate co-tier interference. The second is to assign macrocell users (MUEs) to clusters by max-min criterion, by which each MUE can avoid using the same resource as the nearest femtocell. The third is a novel adaptive power control scheme with femtocells downlink transmit power adjusted adaptively based on the signal to interference plus noise ratio (SINR) level of neighboring users. Simulation results show that the proposed scheme can effectively increase the successful transmission ratio and ergodic capacity of femtocells, while guaranteeing QoS of the macrocell.

On Antenna Orientation for Inter-Cell Interference Coordination in Cellular Network MIMO Systems

  • Sheu, Jeng-Shin;Lyu, Shin-Hong;Huang, Chuan-Yuan
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.639-648
    • /
    • 2016
  • Next-generation (4G) systems are designed to support universal frequency reuse (UFR) to achieve best use of valuable spectra. However, it leads to undesirable interference level near cell borders. To control this, 4G systems adopt techniques, such as network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC), to improve cell-edge throughput. Network MIMO aims at mitigating inter-cell interference towards cell-edge users (CEUs) through multi-cell cooperation, where each collaborative base station serves both cell-center users (CCUs) and CEUs, including other cells' CEUs, under a power constraint. The present ICIC strategies cannot be directly applied to network MIMO because they were designed in absence of multi-cell coordination. In the presence of network MIMO, this paper investigates antenna orientations in ICIC and the method of power management. Results show that a proper antenna orientation can improve the cell-edge capacity and meantime lower the interference to CCUs. Capacity inconsistency between CCUs and CEUs is detrimental to mobile communications. Simulation results show that the proposed power management for ICIC in network MIMO systems can achieve a uniform data rate regardless users' position.

Real-time implementation of distributed beamforming for simultaneous wireless information and power transfer in interference channels

  • Hong, Yong-Gi;Hwang, SeongJun;Seo, Jiho;Lee, Jonghyeok;Park, Jaehyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.

Cognitive Relay Networks with Underlay Spectrum Sharing and Channel Estimation Error: Interference Probability and BER Analysis

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.301-304
    • /
    • 2014
  • This paper proposes accurate interference probability and bit error rate formulas for cognitive relay networks with underlay spectrum sharing and channel estimation error (CEE). Numerous results reveal that the CEE not only degrades the performance of secondary systems (SSs) but also increases interference power caused by SSs to primary systems (PSs), eventually unfavorable to both systems. A solution to further protect PSs from this effect through reducing the power of secondary transmitters is investigated and analyzed.

Interference Effects of Low-Power Devices on the UE Throughput of a CR-Based LTE System

  • Kim, Soyeon;Sung, Wonjin
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.353-359
    • /
    • 2014
  • Recently, the use of mobile devices has increased, and mobile traffic is growing rapidly. In order to deal with such massive traffic, cognitive radio (CR) is applied to efficiently use limited-spectrum resources. However, there can be multiple communication systems trying to access the white space (unused spectrum), and inevitable interference may occur to cause mutual performance degradation. Therefore, understanding the effects of interference in CR-based systems is crucial to meaningful operations of these systems. In this paper, we consider a long-term evolution (LTE) system using additional spectra by accessing the TV white space, where low-power devices (LPDs) are licensed primary users, in addition to TV broadcasting service providers. We model such a heterogeneous system to analyze the co-existence problem and evaluate the interference effects of LPDs on LTE user equipment (UE) throughput. We then present methods to mitigate the interference effects of LPDs by 'de-selecting' some of the UEs to effectively increase the overall sector throughput of the CR-based LTE system.

Interference Cancellation System to Prevent the Oscillation of the Wireless Communication System using the Same Frequency (동일 주파수 무선통신 시스템의 발진방지를 위한 간섭잡음제거기)

  • 김선진;김남영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.253-262
    • /
    • 2003
  • In this paper, the interference cancellation system, which is used to cancel the feedback signal in the wireless communication system with the same frequency, is studied. The time varying feedback signal generated from transmitter antenna to receiver antenna reduces the performance of the receiver system. the interference cancellation system using adaptive feedback method(AF-ICS) is suggested to prevent the oscillation of the receiver system and maintain the maximum output power of the power amplifier by the reduction of time-varying feedback signal and also this paper conforms that the oscillation disappears from the output signal by cancellation of the feedback signal and the total output power is satisfied the system specification.

On Power Allocation Schemes for Bi-directional Communication in a Spectrum Sharing-based Cognitive Radio System

  • Kim, Hyungjong;Wang, Hanho;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.285-297
    • /
    • 2014
  • This paper presents the results of an investigation into bi-directional communication in spectrum sharing-based cognitive radio (Bi-CR) systems. A Bi-CR system can increase the spectral efficiency significantly by sharing the spectrum and through the bi-directional use of spatial resources for two-way communication. On the other hand, the primary user experiences more interference from the secondary users in a Bi-CR system. Satisfying the interference constraint by simply reducing the transmission power results in performance degradation for secondary users. In addition, secondary users also experience self-interference from echo channels due to full duplexing. These imperfections may weaken the potential benefits of the Bi-CR system. Therefore, a new way to overcome these defects in the Bi-CR system is needed. To address this need, this paper proposes some novel power allocation schemes for the Bi-CR system. This contribution is based on two major analytic environments, i.e., noise-limited and interference-limited environments, for providing useful analysis. This paper first proposes an optimal power allocation (OPA) scheme in a noise-limited environment and then analyzes the achievable sum rates. This OPA scheme has an effect in the noise-limited environment. In addition, a power allocation scheme for the Bi-CR system in an interference-limited environment was also investigated. The numerical results showed that the proposed schemes can achieve the full duplexing gain available from the bi-directional use of spatial resources.

Performance Analysis of Cyclostationary Interference Suppression for Multiuser Wired Communication Systems

  • Im, Gi-Hong;Won, Hui-Chul
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.93-105
    • /
    • 2004
  • This paper discusses cyclostationary interference suppression for multiuser wired communication systems. Crosstalk interference from digital signals in multipair cables has been shown to be cyclostationary. Many crosstalk equalization or suppression techniques have been proposed which make implicit use of the cyclostationarity of the crosstalk interferer. In this paper, the convergence and steady-state behaviors of a fractionally spaced equalizer (FSE) in the presence of multiple cyclostationary crosstalk interference are thoroughly analyzed by using the equalizer's eigenstructure. The eigenvalues with multiple cyclostationary interference depend upon the folded signal and interferer power spectra, the cross power spectrum between the signal and the interferer, and tile cross power spectrum between the interferers, which results in significantly different initial convergence and steady-state behaviors as compared to the stationary noise case. The performance of the equalizer varies depending on the relative clock phase of the symbol clocks used by the signal and multiple interferers. Measued characteristics as well as analytical model of NEXT/FEXT channel are used to compute the optimum and worst relative clock phases among the signal and multiple interferers.

Performance Analysis of the Multi-User Detector Employing a Hybrid Interference Cancellation Scheme in a WCDMA System (WCDMA 시스템에서 Hybrid Interference Cancellation 기법을 적용한 다중사용자 검파기의 성능분석)

  • 서정욱;오창헌;장은영;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper, in order to know the effect of the interference, we have analyzed the BER (Bit Error Rate) performance of the MUD(Multi-User Detector) employing HIC(Hybrid Interference Cancellation) scheme for the asynchronous WCDMA system based on 3GPP(3rd Generation Partnership Project) Spec. through the In this paper, in order to know the effect of the interference, we have analyzed the BER (Bit Error Rate) performance of the MUD(Multi-User Detector) employing HIC(Hybrid Interference Cancellation) scheme for the asynchronous WCDMA system based on 3GPP(3rd Generation Partnership Project) Spec. through the computer simulation. we have assumed Rayleigh fading channel. And we have compared its BER performance with SIC's(Successive Interference Cancellation) and with PIC's(Parallel Interference Cancellation), which are the representative schemes in the subtractive interference cancellation. From the results, it is shown that PlC or HIC is effective for high data-rate users and SIC of HIC for low data-rate users to eliminate the interference. Regardless of the data rate, it is reasonable to use the HIC structure for WCDMA system to satisfy all of users' services. The reason is that the SIC scheme in front of HIC can guarantee the performance of low power users to cancel the serious interference caused by the high power users, while PIC in the rear of it can guarantee the performance of high power users to cancel the interference caused by the low power users.