• Title/Summary/Keyword: Interference Averaging

Search Result 23, Processing Time 0.029 seconds

Iterative Self-Interference Channel Estimation for In-Band Full-Duplex Cellular Systems (대역내 전이중 셀룰러 시스템을 위한 반복적인 자기간섭 채널 추정)

  • Shin, Changyong;Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In this paper, we propose an iterative self-interference (SI) channel estimation method for in-band full-duplex cellular systems that employ orthogonal frequency division multiple access (OFDMA) on downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) on uplink (UL), as in Long Term Evolution (LTE) systems. The proposed method first acquires coarse estimates of SI channels using DL signals and UL pilots, which are known to the base stations, and then refines the estimates by consecutively exploiting averaging in the frequency domain and channel truncation in the time domain. In addition, the method enhances the estimates further by iteratively executing this estimation procedure, and does not require any radio resources dedicated to SI channel estimation. Simulation results demonstrate that by significantly improving the SI channel estimation performance without requiring exact knowledge of the SI channel length, the proposed method achieves UL channel estimation performance and signal-to-interference-plus-noise ratio (SINR) performance very close to those in perfect SI cancellation.

A Study on Multiband FTN Method for Improving Throughput Efficiency (전송 효율 향상을 위한 다중 밴드 FTN 기법 연구)

  • Seo, Jung-Hyun;Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.235-240
    • /
    • 2018
  • FTN method which transmits signals faster the Nyquist rate is representative method for improving throughput efficiency sacrificed performance due to inter-symbol interference. To compensate performance loss, in this paper, we propose a multiband FTN method which split the coded bits into several bands and transmits signals applying FTN method. As coded bits are being assigned different bands, number of samples per bit of each band is increased, it induced performance improvement by noise averaging effect. In the simulations, compared the performance of single band FTN method and multiband FTN method when the interference rate is 25%. The results of simulation show the performance of proposed method is better than that of single band FTN one by 0.3dB~0.5dB.

Interference Elimination Using Double Constraints Method on the Beamforming System (이중의 제한조건을 사용하는 빔형성 방법)

  • Ryu, Kil-Hyen;Kim, Kwang-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.9-13
    • /
    • 2010
  • In this thesis, we develop and analyze the beamforming algorithm which has two constraints to combat the signal cancellations. Through the simulation results, it is shown that the proposed scheme is more efficient compared with the spatial averaging method for preventing signal cancellation and eliminating interfering signal.

Excision GO-CFAR Detectors (Excision GO-CFAR 검출기)

  • 한용인;김태정
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.50-57
    • /
    • 1992
  • This paper proposes and analyzes a new CFAR(Constant False Alarm Rate) detector called the EXGO(Excision Greatest Of)-CFAR. This is the combination of the EXCA(Excision Cell Averaging)-CFAR that shows a good performance under the influence of interferences and the GO(Greatest Of)-CFAR that fights well with clutter edges. For the performance analysis, the formulas for the detection probability and the false alarm probability are derived and computed, and the results are compared with other existing CFAR detectors. Our analysis shows that the proposed EXGO-CFAR considerably improves the false-alarm-rate performance of the EXCA-CFAR at clutter edges while maintaining the high detection probability performance of the EXCA-CFAR in the homogeneous and/or interference noise environment.

  • PDF

Partial Principal Component Elimination Method and Extended Temporal Decorrelation Method for the Exclusion of Spontaneous Neuromagnetic Fields in the Multichannel SQUID Magnetoencephalography

  • Kim, Kiwoon;Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kang, Chan-Seok;Kim, In-Seon;Park, Yong-Ki
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.114-120
    • /
    • 2003
  • We employed a method eliminating a temporally partial principal component (PC) of multichannel-recorded neuromagnetic fields for excluding spatially correlated noises from event-evoked signals. The noises in magnetoencephalography (MEG) are considered to be mainly spontaneous neuromagnetic fields which are spatially correlated. In conventional MEG experiments, the amplitude of the spontaneous neuromagnetic field is much lager than that of the evoked signal and the synchronized characteristics of the correlated rhythmic noise makes it possible for us to extract the correlation noises from the evoked signal by means of the general PC analysis. However, the whole-time PC of the fields still contains a little projection component of the evoked signal and the elimination of the PC results in the distortion of the evoked signal. Especially, the distortion will not be negligible when the amplitude of the evoked signal is relatively large or when the evoked signals have a spatially-asymmetrical distribution which does not cancel out the corresponding elements of the covariance matrix. In the period of prestimulus, there are only the spontaneous fields and we can find the pure noise PC that is not including the evoked signal. Besides that, we propose a method, called the extended temporal decorrelation method (ETDM), to suppress the distortion of the noise PC from remanent evoked signal components. In this study, we applied the Partial Principal component elimination method (PPCE) and ETDM to simulated signals and the auditory evoked signals that had been obtained with our homemade 37-channel magnetometer-based SQUID system. We demonstrate here that PPCE and ETDM reduce the number of epochs required in averaging to about half of that required in conventional averaging.

  • PDF

Performance of SIR-based power control using unused OVSF codes for WCDMA reverse link receiver (미사용 OVSF 부호를 이용한 WCDMA 역방향 링크 수신기의 SIR 기반 전력제어 성능 분석)

  • 이영용;박수진;안재민;임민중;정성현;최형진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.282-292
    • /
    • 2003
  • In this paper, we evaluate the performance of WCDMA reverse link receiver system with closed loop fast transmit power control (TPC). For fast power control, SIR must be measured precisely. We propose a new SIR measurement algorithm having a simple structure. The proposed algorithm uses unused OVSF code for interference power evaluation. The proposed SIR measurement algorithm is compared to the conventional SIR measurement algorithm in Ref.$^{[1]}$ under closed loop fast TPC. We adopted WMSA channel estimation filter with Κ=2 for mobile radio channel estimation and considered one slot TPC delay. Extensive computer simulation results show that the proposed algorithm using unused OVSF code reduces the required Ε$_{b}$$_{0}$ at the BER of 10$^{-3}$ up to 0.9㏈ and has an improved TPC error performance compared to the conventional algorithm.

An improved frequency offset estimation technique for an OFDM system (OFDM 시스템을 위한 개선된 주파수 옵셋 추정 기법)

  • 최종호;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1270-1281
    • /
    • 1998
  • Frequency offset in an orthogonal frequency division multiplexing (OFDM) system is known to cause the inter-channel interference (ICI), amplitude and phase distortion of a received signal, resulting in a severe performance degradation of the total system. In this paper, we propose an improved pilot-based masimum likelihood frequency offset estimation technique, which uses the predefined sync-subchannels, and derive the error performance of the proposed frequency offset estimator analytically. The proposed technique improves the performance of the frequency offset estimator by adding up the frequency offset caused by coherent phase changes and averaging out the effect caused by random phase error. It is confirmed by computer simulations that the upper bound of error variance for the proposed frequency offset estimator analytically derived in this paper is correct, and that the proposed estimator has better performance than the previous ones in terms of error variance, tracking range, and time-varying characteristics of a channel.

  • PDF

A Study on the Initial Weight Value in Broad-Band Adaptive Arrays (광대역 신호용 적응 비임 형성기의 초기 가중치에 관한 연구)

  • 한동호;임동호;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.549-560
    • /
    • 1989
  • In this paper, the method of determining the initial weighting vlaues fuctioning as a filter under the Directional Constrained Minimization of Power(DCMP) algorithm is presented. By analyzing the sideband beamformer with the Finite Impulse Response (FIR) filter concepts, the constraints of any desired directions are obtained and the initial weighing values with fast adaptation time are formulated from those constraints. By applying this proposed initial weighting values to the DCMP and the spatial averaging processor, the interference of a desired direction and the coherent noises are eliminated at the same time. The improvement of this method compared with the existing algorithm is confirmed by computer simulation.

  • PDF

RadioCycle: Deep Dual Learning based Radio Map Estimation

  • Zheng, Yi;Zhang, Tianqian;Liao, Cunyi;Wang, Ji;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3780-3797
    • /
    • 2022
  • The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.