• 제목/요약/키워드: Interfacial temperature

검색결과 617건 처리시간 0.024초

수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정 (Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods)

  • 박규령;안혜진;김선옥;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.

도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연 파괴 특성에 관한 연구 (A Study on the AC Interfacial Breakdown Properities of the Interface between Epoxy/EPDM with the variation of spreaded oil)

  • 배덕권;이수길;정일형;이준웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.897-899
    • /
    • 1999
  • In this paper, the interfacial dielectric breakdown phenomenon of interface between Epoxy/EPDM (ethylene propylene diene terpolymer) was discussed, which affects stability of insulation system of power delivery devices. Specimen structure was designed by using MAGSOFT's FLUX2D based on the finite elements method. Design concepts is to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the Epoxy/EPDM interface. AC interfacial breakdown phenomenon of was investigated by variation of interfacial conditions oil and temperature which are supposed to have influence on the interfacial breakdown strength. Interfacial breakdown strength was improved by spreading oil over interfacial surface. The decreasing ratio of the AC interfacial breakdown strength in non-oiled specimens was increased by the temperature rising and its of oiled specimens was not affected by temperature.

  • PDF

$Nb/MoSi_2-ZrO_2$ 적층복합재료의 제조 및 충격특성 (Fabrication and Impact Properties of $Nb/MoSi_2-ZrO_2$ Laminate Composites)

  • 이상필;윤한기;공유식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.29-34
    • /
    • 2002
  • [ $Nb/MoSi_2-ZrO_2$ ] laminate composites have been successfully fabricated by alternately stacking $MoSi_2-ZrO_2$ powder layer and Nb sheet, followed by hot pressing in a graphite mould. The fabricating parameters were selected as hot press temperatures. The instrumented Charpy impact test was carried out at the room temperature in order to investigate the relationship between impact properties and fabricating temperatures. The interfacial shear strength between $MoSi_2-ZrO_2$ and Nb, which is associated with the fabricating temperature and the growth of interfacial reaction layer, is also discussed. The plastic deformation of Nb sheet and the interfacial delamination were macroscopically observed. The $Nb/MoSi_2-ZrO_2$ laminate composites had the maximum impact value when fabricated at 1623K, accompanying the increase of fracture displacement and crack propagation energy. The interfacial shear strength of $Nb/MoSi_2-ZrO_2$ laminate composites increased with the growth of interfacial reaction layer, which resulted from the increase of fabricating temperature. there is an appropriate interfacial shear strength for the enhancement of impact value of $Nb/MoSi_2-ZrO_2$ laminate composites. A large increase of interfacial shear strength restrains the plastic deformation of Nb sheet.

  • PDF

Toughened 에폭시와 실리콘고무 계면의 교류 절연파괴 현상에 관한 연구 (Study on the AC Interfacial Breakdown Properties in the Interface between toughened Epoxy and Silicone Rubber)

  • 박우현;이기식
    • 한국전기전자재료학회논문지
    • /
    • 제15권12호
    • /
    • pp.1079-1084
    • /
    • 2002
  • Because complex insulation method is used in EHV(extra high voltage) insulation systems, macro Interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. Interface between toughened epoxy and silicone rubber was selected as a interface in EHV insulation systems and tested AC interfacial breakdown properties with variation of many conditions to influence on electrical Properties, such as interfacial pressure, roughness and oil. Specimen was designed to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the direction of the interface between epoxy and silicone rubber by using FEM(finite elements method). It could control the interfacial pressure, roughness and viscosity of oil. From the result of this study, it was shown that the interfacial breakdown voltage is improved by increasing interfacial Pressure and oil. In particular, the dielectric strength saturates at certain interracial Pressure level. The decreasing ratio of the interfacial breakdown voltage in non-oiled specimen was increased by the temperature rising, while oiled specimen was not affected by temperature.

Nb/MoSi2적층복합재료의 제조 및 파괴특성 (Fabrication and Fracture Properties of Nb/MoSi2Laminate Composites)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1047-1052
    • /
    • 2002
  • The impact value, the interfacial shear strength, the tensile strength and the fracture strain of Nb/MoSi$_2$laminate composites, which were associated with the interfacial reaction layer, have been investigated. Three types of Nb/MoSi$_2$ laminate composites alternating sintered MoSi$_2$ layers and Nb foils were fabricated as the parameter of hot press temperature. The thickness of interfacial reaction layer of Nb/MoSi$_2$ laminate composites increased with increasing the fabrication temperature. The growth of interfacial reaction layer increased the interfacial shear strength and led to the decrease of impact value in Nb/MoSi$_2$ laminate composites. It was also found that in order to maximize the fracture energy of Nb/MoSi$_2$ laminate composites, interfacial shear strength and the thickness of interfacial reaction layer must be secured appropriately.

극저온에서의 미세역학시험법을 이용한 섬유/수지 복합재료의 계면 특성 평가 (Inherent and Interfacial Evaluation of Fibers/Epoxy Composites by Micromechanical Tests at Cryogenic Temperature)

  • 권동준;왕작가;구가영;엄문광;박종만
    • Composites Research
    • /
    • 제24권4호
    • /
    • pp.11-16
    • /
    • 2011
  • 극저온 응용에서 사용하는 고분자복합재료의 계면물성 유지가 아주 중요하다. 본 연구에서는 상온과 극저온에서 사용하는 단일 탄소섬유강화 에폭시 복합재료를 마이크로드롭넷 시험과 전기-미세역학시험법을 이용한 계면전단강도와 겉보기 강성도를 평가하였다. 탄소섬유와 저온용 에폭시의 극저온에 따른 기계적 물성변화를 확인하였다. 극저온에서 탄소섬유 인장실험 결과, 상온과 비교하여 강성도는 유지하면서 강도와 연신율이 감소하였다. 이에 비해, 에폭시 기지는 상온보다 극저온에서 강도가 증가되었으나, 연신율이 감소하는 결과를 보여주었다. 이는 탄소섬유에 비해 에폭시 수지내 존재하는 빈 공간이 극저온에서 열적 수축이 최대로 일어나기 때문이다. 계면전단강도는 $-10^{\circ}C$에서 최대를 보인 후에 극저온까지 점차 감소를 보여 주었다. 그러나, 탄소섬유와 YDF-175 에폭시가 극저온에서도 여전히 상온보다 양호한 계면전단강도를 보여주었다. 이 결과는 아주 유용하며 선정된 저온용 에폭시의 인성과 계면접착력이 극저온에서도 유지되기 때문이다.

SXLPE/XLPE laminate의 계면전하 거동 (Interfacial Charge Behaviors in SXLPE/XLPE Laminates)

  • 고정우;남진호;서광석
    • 한국전기전자재료학회논문지
    • /
    • 제15권2호
    • /
    • pp.127-132
    • /
    • 2002
  • Space charge distributions and behaviors in silane crosslinked polyethylene(SXLPE)/ crosslinked polyethylene(XLPE) laminates were investigated using a pulsed electroacoustic (PEA) method. In case of monolayer, XLPE shows heterocharge while SXLPE shows homocharge. It was observed that charges were accumulated at the interface of SXLPE/XLPE laminate when applied electric field was more than 20kV/mm. The charge profile at various temperatures was also acquired using temperature-controllable PEA system. Although applied electric field is only 8.6 kV.mm, positive interfacial charge starts to appear near 50$^{\circ}C$. It was found that the interfacial charge behavior of SXLPE/XLPE laminate under low voltage at high temperature is corresponding to that under high voltage at room temperature.

CLAD강의 DEBONDING 현상에 대한 연구(1) -열처리에 의한 clad강 계면의 강도 약화- (A Study on the Debonding Phenomena of Clad Steel(1) -Deterioration of Interfacial Strength in Clad Steel by Thermal Treatment-)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • 제5권3호
    • /
    • pp.28-37
    • /
    • 1987
  • To clarify the debonding phenomena of clad steel, the effect of thermal treatment (temperature, holding time) on the interfacial strength of clad steel was preliminarily investigated. From this study, it was confirmed that the interfacial strength of clad steel was deteriorated by thermal treatment and the amount of strength deteriorated, depending on the condition of thermal treatment, could be evaluated by the following equation. ${\sigma}_{ HT}/{\sigma}_{i}/=A_{0}-A\;exp(-Q/RT)log(t/t_{0})$ This equation implies that temperature has a far strong effect on strength deterioration than tiem. The deterioration of interfacial strength of clad steel after thermal treatment may be derived from the thermal stress caused by the difference in thermal expansion coefficient between component materials and microstructural change along the interface.

  • PDF

Ti_{50}-Ni_{50} 형상기억합금 복합체의 계면 접학 전단강도 향상에 관한 연구 (A Study on the Improvement of Interfacial Bonding Shear Strength of Ti50-Ni50 Shape Memory Alloy Composite)

  • 이효재;황재석
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2461-2468
    • /
    • 2000
  • In this paper, single fiber pull-out test is used to measure the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite with temperature. Fiber and matrix of $Ti_{50}-Ni_{50}$ shape memory alloy composite are respectively $Ti_{50}-Ni_{50}$ shape memory alloy and epoxy resin. To strengthen the interfacial bonding shear stress, various surface treatments are used. They are the hand-sanded surface treatment, the acid etched surface treatment and the silane coupled surface treatment etc.. The interfacial bonding shear strength of surface treated shape memory alloy fiber is greater than that of surface untreated shape memory alloy fiber by from 10% to 16%. It is assured that the hand-sanded surface treatment and the acid etched surface treatment are the best way to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory composite. The best treatment condition of surface is 10% HNO$_3$ solution in the etching method to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite.

Interfacial Layer Control in DSSC

  • Lee, Wan-In
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.75-75
    • /
    • 2011
  • Recently, dye-sensitized solar cell (DSSC) attracts great attention as a promising alternative to conventional silicon solar cells. One of the key components for the DSSC would be the nanocrystalline TiO2 electrode, and the control of interface between TiO2 and TCO is a highly important issue in improving the photovoltaic conversion efficiency. In this work, we applied various interfacial layers, and analyzed their effect in enhancing photovoltaic properties. In overall, introduction of interfacial layers increased both the Voc and Jsc, since the back-reaction of electrons from TCO to electrolyte could be blocked. First, several metal oxides with different band gaps and positions were employed as interfacial layer. SnO2, TiO2, and ZrO2 nanoparticles in the size of 3-5 nm have been synthesized. Among them, the interfacial layer of SnO2, which has lower flat-band potential than that of TiO2, exhibited the best performance in increasing the photovoltaic efficiency of DSSC. Second, long-range ordered cubic mesoporous TiO2 films, prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process, were utilized as an interfacial layer. Mesoporous TiO2 films seem to be one of the best interfacial layers, due to their additional effect, improving the adhesion to TCO and showing an anti-reflective effect. Third, we handled the issues related to the optimum thickness of interfacial layers. It was also found that in fabricating DSSC at low temperature, the role of interfacial layer turned out to be a lot more important. The self-assembled interfacial layer fabricated at room temperature leads to the efficient transport of photo-injected electrons from TiO2 to TCO, as well as blocking the back-reaction from TCO to I3-. As a result, fill factor (FF) was remarkably increased, as well as increase in Voc and Jsc.

  • PDF