• Title/Summary/Keyword: Interfacial heat transfer

Search Result 53, Processing Time 0.03 seconds

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

An Experimental Investigation of Direct Condensation of Steam Jet in Subcooled Water

  • Kim, Yeon-Sik;Chung, Moon-Ki;Park, Jee-Won;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-57
    • /
    • 1997
  • The direct contact condensation phenomenon, which occurs when steam is injected into the subcooled water, has been experimentally investigated. Two plume shapes in the stable condensation regime are found to be conical and ellipsoidal shapes depending on the steam mass flux and the liquid subcooling. Divergent plumes, however, are found when the subcooling is relatively small. The measured expansion ratio of the maximum plume diameter to the injector inner diameter ranges from 1.0 to 2.3. By means of fitting a large amount of measured data, an empirical correlation is obtained to predict the steam plume length as a function of a dimensionless steam mass flux and a driving potential for the condensation process. The average heat transfer coefficient of direct contact condensation has been found to be in the range 1.0~3.5 ㎿/$m^2$.$^{\circ}C$. Present results show that the magnitude of the average condensation heat transfer coefficient depends mainly on the steam mass fin By using dynamic pressure measurements and visual observations, six regimes of direct contact condensation have been identified on a condensation regime map, which are chugging, transition region from chugging to condensation oscillation, condensation oscillation, bubbling condensation oscillation, stable condensation, and interfacial oscillation condensation. The regime boundaries are quite clearly distinguishable except the boundaries of bubbling condensation oscillation and interfacial oscillation condensation.

  • PDF

A Numerical Analysis of cleat and Mass Transfer on the Dehumidifier of Liquid Desiccant Cooling System (액체 건조제 냉각장치의 제습기에서 열 및 물질전달 수치해석)

  • Go, Gwang-Ho;O, Myeong-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1756-1765
    • /
    • 2001
  • The heat and mass transfer process between the falling liquid desiccant(TEG) film and the air in counter flow at the dehumidifier of desiccant cooling system were investigated. The governing equations with appropriate boundary and interfacial conditions describing the physical problems were solved by numerical analysis. As a result, the effects of the design parameters and the outside air conditions on the rates of dehumidification and sensible cooling were discussed. The results of the dehumidification and sensible cooling rates were compared with those of the cross flow at the same conditions.

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

Condensation Heat Transfer Coefficient in Horizontal Stratified Cocurrent Flow of Steam and Cold Water (물-증기 동방향 성층이상 유동에서의 응축 열전달 계수)

  • 김효정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.618-624
    • /
    • 1986
  • Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationshipo. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial paramters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here rexcommened since it is based on the turbulent properties which may be closely related to the condensation phenemena.

CFD Code Development for a Two-phase Flow with an Interfacial Area Transport Equation (계면면적 수송방정식을 적용한 이상유동 해석코드 개발)

  • Bae, B.U.;Yoon, H.Y.;Euh, D.J.;Song, C.H.;Park, G.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2696-2701
    • /
    • 2007
  • For the analysis of a two-phase flow, the interaction between two phases such as the interfacial momentum or heat transfer is proportional to the interfacial area. So the interfacial area concentration (IAC) is one of the most important parameters governing the behavior of each phase. This study focuses on the development of a computational fluid dynamics (CFD) code for investigating a boiling flow with a one-group IAC transport equation. It was based on the two-fluid model and governing equations were calculated by SMAC algorithm. For checking the robustness of the developed code, the experiment of a subcooled boiling in a vertical annulus channel was analyzed to validate the capability of the IAC transport equation. As the results, the developed code was confirmed to have the capability in predicting multi-dimensional phenomena of vapor generation and propagation in a subcooled boiling.

  • PDF

Study on Fluid Flow and Heat Transfer Characteristics in a Flat Heat Pipe (평판형 히트 파이프 내의 유체 유동 및 열전달 특성에 관한 연구)

  • Do, Kyu-Hyung;Kim, Sung Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2113-2118
    • /
    • 2007
  • In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid charge have been included in the proposed model. In particular, the axial variations of the wall temperature and the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are compared to existing experimental data.

  • PDF

Numerical Simulation on the Spreading and Heat Transfer of Ex-Vessel Core Melt in a Channel (전산해석을 이용한 원자로 노심 용융물의 노외 거동 및 열전달 특성 분석)

  • Ye, In-Soo;Ryu, Chang-Kook;Ha, Kwang-Soon;Song, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.425-429
    • /
    • 2011
  • In the unlikely of nuclear reactor meltdown, the leaked core melt or corium must be contained in a device called core-catcher so that the corium can be cooled and stabilized. The ex-vessel behavior of corium involves complex physical and chemical mechanisms of flow propagation, heat transfer, and reactions with sacrificial substrates. In this study, the detailed characteristics of corium flow and heat transfer were investigated by using a commercial CFD code for VULCANO VE-U7 test reported in the literature. The volume-of-fluid (VOF) model was used to predict the interfacial surface formation of corium and the surrounding air, and the discrete ordinate model was adopted to calculate radiation between corium and the surroundings. It was found that cooling via radiation through the top surface of corium had a dominant effect on the temperature and viscosity profiles at the front of the corium flow.

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Measurement of thermal contact resistance at Cu-Cu interface

  • Kim, Myung Su;Choi, Yeon Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.48-51
    • /
    • 2013
  • The thermal contact resistance (TCR) is one of the important components in the cryogenic systems. Especially, cryogenic measurement devices using a cryocooler can be affected by TCR because the systems have to consist of several metal components in contact with each other for heat transferring to the specimen without cryogen. Therefore, accurate measurement and understanding of TCR is necessary for the design of cryogenic measurement device using a cryocooler. The TCR occurs at the interface between metals and it can be affected by variable factors, such as roughness of metal surface, contact area and contact pressure. In this study, we designed TCR measurement system at various temperatures using a cryocooler as a heat sink and used steady state method to measure the TCR between metals. The copper is selected as a specimen in the experiment because it is widely used as a heat transfer medium in the cryogenic measurement devices. The TCR between Cu and Cu is measured for various temperatures and contact pressures. The effect of the interfacial materials on the TCR is also investigated.