• Title/Summary/Keyword: Interfacial area

Search Result 194, Processing Time 0.027 seconds

Mechanical Interfacial Properties of Electrospun-based Poly(ethyleneoxide) Nanofibers/Epoxy Composites (전기방사한 폴리에틸렌옥사이드 나노섬유/에폭시 복합재료의 기계적 계면특성)

  • Jeong Hyo-Jin;Lee Jae-Rock;Park Soo-Jin
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2005
  • In this work, poly(ethylene oxide) (PEO) nanofibers were fabricated by electrospinning to prepare the nanofibers-reinforced composites. And the PEO powders-impregnated composites were also prepared to compare the mechanical interfacial behaviors of the composites. Morphology and fiber diameter of PEO nanofibers were determined by SEM observation. Mechanical interfacial properties of the composites were investigated in fracture toughness $(K_{IC})$ and interlaminar shea. strength (ILSS) tests. As a result, the fiber diameter was decreased with increasing the applied voltage. And optimum condition for the fiber formation was 15 kV, resulting from increasing of jet instability at high voltage. The PEO-based nanofibers-reinforced epoxy composites showed the improvements of both $K_{IC}$ and ILSS, compared to the composites impregnated with PEO powders. These results indicated that the nanofibers had higher specific surface area and larger aspect ratio than those of the powders, which played an important role in improving the mechanical interfacial properties of the composites.

Interfacial Adhesion Properties of Surface Treated Polyarylate Fiber with Polyethylene Naphthalate (폴리아릴레이트 섬유의 표면처리에 의한 폴리에틸렌 나프탈레이트 수지와의 계면접착특성)

  • Yong, Da Kyung;Choi, Han Na;Yang, Ji Woo;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • Morphological changes of polyarylate (PAR) fiber treated with formic acid and ultraviolet (UV) were observed by using a scanning electron microscope (SEM) and an atomic force microscope (AFM). The results were analysed by using root mean square (RMS) roughness. In addition, the chemical changes of surface was investigated using contact angle and the interfacial adhesive strength between PAR fiber and PEN (Polyethylene naphthalate) matrix was calculated using the Pull-out test results. As the acid treatment concentration and UV irradiation time increased, cracks and pores were produced on the PAR fiber surface. Due to the roughness increased, the contact angle was decreased. For this reason, RMS roughness of PAR fiber was increased and the interfacial adhesive strength between the PAR fiber and PEN matrix was improved. The increase of interfacial adhesive strength was responsible for the increase of surface area which have cracks and pores.

K and Cs Doped Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx by Methane

  • Rao, Komateedi N.;Yu, Chang-Yong;Lack, Choi-Hee;Ha, Heon-Phil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.510-516
    • /
    • 2011
  • In the present study, potassium and caesium doped Ag/$Al_2O_3$ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/$Al_2O_3$ and Cs-Ag/$Al_2O_3$ catalysts exhibited a promotional effect on deNOx activity in the presence of $SO_2$ and $H_2O$. The long-term isothermal studies at $550^{\circ}C$ under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.

Molecular Area and Interfacial Tension Behavior of High Efficiency Cosurfactants (보조계면활성제의 계면에서의 분자면적과 계면장력 거동)

  • Kim, Chunhee
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • Gibbs' adsorption isotherms are studied to assay the structural effects of ethylene oxide (EO) and propylene oxide (PO) moieties on the molecular area and the interfacial tension behavior of molecules at the interface. Several industrial alcohols and isomerically pure alcohols, which have a general stucture of C4H9O(EO)m(PO)nH, are examined for their cosurfactant properties. They are high molecular weight alcohols and more surface active than the cosurfactants usually used. Results show that the number and the sequence of EO and PO units significantly affect the molecular areas and the interfacial tension (IFT) behavior of these molecules at the water/oil interface. The following conclusions are drawn from the result: 1) PO is more efficient in lowering the IFT and less effective in adsorption than EO. 2) For molecules having the same molecular weight but different structures, smaller molecules are more efficient in lowering the IFT. 3) When more EO, PO, or both units are added to the same hydrophobe, the molecule become bigger and more efficient in lowering the IFT.

  • PDF

Correlatin between the Microstructure and the Electrical Conductivity of SOFC anode, Ni-YSZ : I. Microstructure Analysis (SOFC 음극용 Ni-YSZ 복합체의 미세구조와 전기적 물성간의 상관관계 : I. 미세구조 분석)

  • Moon, Hwan;Lee, Hae-Weon;Lee, Jong-Ho;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.479-490
    • /
    • 2000
  • The microstructure of Ni-YSZ composite as an anode of SOFC was investigated as a function of Ni content(10-70 vol%) in order to examine the correlation between microstructural-and electrical property. Image analysis based on quantitative microscopy theory was performed to quantify the microstructural property. We could get the informations about the size and distribution, contiguity and interfacial area of each phase or between the phases from the image analysis. According to the image analysis, contiguity between the same phae was mainly dependent on the amount of the phase while the contiguity between different phases was additionally influenced by the microstructural changes, especailly by the coarsening of the Ni phase. The whole length of pores perimeter was increased as Ni content increased, which indicated the overall microstructural evolution was mostly related with the coarsening of Ni phase. Ni-Ni interfacial area was also gradually increased as Ni content increased but controlled by pore phase at low Ni content region and by YSZ phase at intermediate Ni content region. These quantified microstructural properties were used to characterize the electrical properties of Ni-YSZ composite.

  • PDF

Fabrication of unidirectional commingled-yarn-based carbon fiber/polyamide 6 composite plates and their bend fracture performances (일방향 혼합방사형 탄소섬유/폴리아미드 6 복합재료판의 제작조건과 굽힘파괴거동)

  • Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.416-427
    • /
    • 1998
  • Unidirectional commingled-yarn-based carbon fiber(CF)/polyamide(PA) 6 composite was fabricated under molding pressures of 0.4, 0.6 and 1.0 MPa to study its flexural deformation and fracture behavior. Fiber/matrix interfacial bonding area became larger with an increase of molding pressure from 0.4 to 0.6 MPa. For molding pressures .geq. 0.6 MPa, good flexural performance of similar magnitudes was attained. For the fracture test, four kinds of notch direction were adopted : edgewise notches parallel (L) and transverse (T) to the major direction of fiber bundles, and flatwise notches parallel(ZL) and perpendicular(ZT) to this direction. Nominal bend strength for L and ZL specimens exhibited high sensitivity to notching. ZL specimens revealed the lowest values of the critical stress intensity factor $K_c$ which was slightly superior to those of unfilled PA6 matrix. Enlargement of the compression area for T specimens was analyzed by means of the rigidity reduction resulting from the fracture occurrence.

A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model

  • Tu, Xi;Li, Zhengliang;Chen, Airong;Pan, Zichao
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.471-484
    • /
    • 2018
  • Refined analysis depicting mass transportation and physicochemical reaction and reasonable computing load with acceptable DOFs are the two major challenges of numerical simulation for concrete durability. Mesoscopic numerical simulation for chloride diffusion considering binder, aggregate and interfacial transition zone is unable to be expended to the full structure due to huge number of DOFs. In this paper, a multiscale approach of combining both mesoscopic model including full-graded aggregate and equivalent macroscopic model was introduced. An equivalent conversion of chloride content at the Interfacial Transition Layer (ITL) connecting both models was considered. Feasibility and relative error were discussed by analytical deduction and numerical simulation. Case study clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Difference for single-scale simulation and multiscale approach was observed. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of rebar placement, rebar diameter, concrete cover and exposure period.

On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation (이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동)

  • 전명석;김영목;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF

Effective Interfacial Area in an Agitated Liquid-Liquid Contactor by a Chemical Method (화학방법에 의한 액-액 계면 면적)

  • Park, Sang-Wook;Moon, Jin-Bok;Shin, Jeung-Ho;Park, Dae-Won;Kim, Jong-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.103-112
    • /
    • 1993
  • The rates of overall mass transfer of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate were measured by using a mechanically agitated vessel in order to get the relationship between the mass transfer rates and experimental variables. The interfacial area between liquid-liquid heterogeneous phases could be obtained by comparing the theoretical values of reaction enhancement factor from an approximated solution of a diffusion equation based on the film theory with the experimental data.

  • PDF