• Title/Summary/Keyword: Interfacial Zone

Search Result 125, Processing Time 0.023 seconds

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

Anti-Plane Shear Behavior of an Arbitrarily Oriented Crack in Bonded Materials with a Nonhomogeneous Interfacial Zone

  • Chung, Yong-Moon;Kim, Chul;Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.269-279
    • /
    • 2003
  • The anti-plane shear problem of bonded elastic materials containing a crack at an arbitrary angle to the graded interfacial zone is investigated in this paper The interfacial zone is modeled as a nonhomogeneous interlayer of finite thickness with the continuously varying shear modulus between the two dissimilar, homogeneous half-planes. Formulation of the crack problem is based upon the use of the Fourier integral transform method and the coordinate transformations of basic field variables. The resulting Cauchy-type singular integral equation is solved numerically to provide the values of mode 111 stress intensity factors. A comprehensive parametric study is then presented of the influence of crack obliquity on the stress intensity factors for different crack size and locations and for different material combinations, in conjunction with the material nonhomogeneity within the graded interfacial zone.

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.

A Study on the Mechanical Properties of Interfacial Transition Zone (ITZ) of Lightweight High Strength Concrete Via Nanoindentation (나노 인덴테이션을 통한 경량 고강도 콘크리트 Interfacial Transition Zone (ITZ)의 역학적 특성에 관한 연구)

  • Im, Su-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • The interfacial transition zone(ITZ) which is the boundary layer between cement composites and aggregates is considered to be the region of gradual transition, heterogeneous, and the weakest part of concrete. For the development of lightweight high strength concrete, it is essential to evaluate the mechanical properties of ITZ between high strength concrete with low water-binder ratio and lightweight aggregates. However, the mechanical properties of ITZ are not well established due to its high porosity and complex structure. Furthermore, the properties of ITZ in concrete using lightweight aggregates are dominated by more various variations (e.g. water-binder ratio, water absorption capacity of aggregate, curing conditions) than normal-weight aggregate concrete. This study aims to elucidate the mechanical properties of ITZ in lightweight high-strength cement composites according to the types of aggregates and the aggregate sizes. Nanoindentation analysis was used to evaluate the elastic modulus of ITZ between high strength cement composites with the water-binder ratio of 0.2 and normal sand, lightweight aggregate with different aggregate siz es of 2mm and 5mm in this study.

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide (그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구)

  • Im, Su-Min;Cho, Seong-Min;Liu, Jun-Xing;Lim, Seungmin;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

Deformation of the Rubber Mold by Using the Cohesive Zone Model Under Cold Isostatic Pressing (응집영역모델을 이용한 정수압 성형 해석시 고무몰드의 변형거동)

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.387-395
    • /
    • 2008
  • Stress distribution and interfacial debonding process at the interface between a rubber mold and a powder compact were analyzed during unloading under cold isostatic pressing. The Cap model proposed by Lee and Kim was used for densification behavior of powder based on the parameters involved in the yield function of general Cap model and volumetric strain evolution. Cohesive elements incorporating a bilinear cohesive zone model were also used to simulate interfacial debonding process. The Cap model and the cohesive zone model were implemented into a finite element program (ABAQUS). Densification behavior of powder was investigated under various interface conditions between a rubber mold and a powder compact during loading. The residual tensile stress at the interface was investigated for rubber molds with various elastic moduli under perfect bonding condition. The variations of the elastic energy density of a rubber mold and the maximum principal stress of a powder compact were calculated for several interfacial strengths at the interface during unloading.

Micremechanics-based Evaluation of Elastic Modulus of Concrete considering Interfacial Transition Zone (천이영역을 고려한 콘크리트 탄성계수의 미시역학적 추정)

  • 송하원;조호진;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.99-107
    • /
    • 1998
  • 콘크리트는 일반적으로 수회시멘트풀과 골재로 이루어진 이상의 복합체이지만 미시적으로는 수화시멘트풀과 골재, 그리고 천이영역으로 이루어진 삼상의 복합체이다. 수화시멘트풀과 골재 사이에서 형성되는 천이영역은 국부적으로 공극률이 높으므로 콘크리트의 강성과 강도에 많은 영향을 끼친다. 본 논문에서는 이러한 천이영역의 특성을 고려하여 콘크리트의 탄성계수를 추정하기 위해 이원 삼중 내포물 모델을 제안하였다. 제안된 모델에 의한 탄성계수의 추정결과는 실험결과와 비교하여 잘 일치하였으며 제안된 모델은 실험적으로 구하기 힘든 천이영역의 특성을 구하는데 사용될 수 있다.

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong Hoon;Huh, Kang Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

Mode I and Mode II Analyses of a Crack Normal to the Graded Interlayer in Bonded Materials

  • Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1386-1397
    • /
    • 2001
  • In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode I) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in bonded media with a graded interfacial zone. The interfacial Bone is treated as a nonhomogeneous interlayer with the continuously varying elastic modulus between the two dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes, based on the Fourier integral transform technique, a singular integral equation with a Cauchy kernel is derived in a separate but parallel manner. In the numerical results, the values of corresponding modes of stress intensity factors are illustrated for various combinations of material and geometric parameters of the bonded media in conjunction with the effect of the material nonhomogeneity within the graded interfacial zone.

  • PDF

Characterization of the Ni and Ni-Cr Porous Metal Reinforced AC4C Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 Ni, Ni-Cr 다공질 발포금속 강화 AC4C 합금기 복합재료에 관한 연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 2005
  • The microstructure and mechanical property of the Ni and Ni-Cr porous metal reinforced AC4C matrix composites fabricated by squeeze casting were investigated. In this study Ni, Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition shows that atsolutionizing temperature of above $520^{\circ}C$, the interfacial reaction zone increases proportionally with heat treatment time and the reaction products formed by interfacial reactions are mainly composed by $Al_{3}Ni$ and $Al_{3}Ni_{2}$ phases.