• Title/Summary/Keyword: Interfacial Treatment

Search Result 374, Processing Time 0.022 seconds

A STUDY ON THE REMOVAL TORQUE OF TITANIUM IMPLANTS (Titanium Implant의 Removal Torque에 관한 연구)

  • Lee, June-Seok;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.148-169
    • /
    • 1994
  • The concept of biologic attachment of load-bearing implants has developed over the past decades as an alternative to the difficulties associated with long term implantation using mechanical fixation and bone cement. The choice of implant material is also as critical an element as site preparation or insertion procedure. The properties of implants that affect host tissue responses are not limited to chemical composition alone, but also include shape, surface characteristics, site of implantation, and mechanical interaction with host tissues. Initial mechanical interlocking prevents micromotion and may be a prerequisite for direct bone apposition. A hard tightening of screws does not necessarily mean a stronger fixation and final tightening of the fixtures is dependent on the experience of the operator. Removal torque is lower than insertion torque. The purpose of this study was to investigate differences in the removal torques at the bone-implant interface of polished and sandblasted Titanium. This experiment will give insight into important factors that must be considered when interpreting in vivo screwing forces on implants during the connection of the transmucosal abutments. We evaluated the significance of different surface textures by comparison of the withdrawal forces necessary for removal of otherwise identical rough and polished implants of Titanium and also evaluated interfacial response on the light microscopic level to implant surface. And the priority of the area of insertion on osseointegration were evaluated. 9 Titanium implants - among them, 3 were for the developmental - of either a smooth or rough surface finish were inserted in the dog mandible in the right side. 3 months later Kanon Torque Gauge was used to unscrew the implants. The results were as follows : 1. No significant difference was seen in the removal torque due to variation in surface treatment, 23 Ncm for the sandblasted and 23.33 Ncm for the polished surface (p>0.05). 2. Implants in the anterior (25 Ncm) mandible showed better resistance to unscrewing in comparison to ones in the posterior (18 Ncm) region (p<0.05). 3. Developmental fixtures (22 Ncm) had similar pullout strength to the control group (p>0.05).

  • PDF

Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma (수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거)

  • Jo, Jin Oh;Lee, Sang Baek;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.544-550
    • /
    • 2013
  • This work investigated the environmental application of an underwater dielectric barrier discharge plasma reactor consisting of a porous hydrophobic ceramic tube to the decolorization of an azo dyeing wastewater. The reactive species generated by the plasma are mostly short-lived, which also need to be transferred to the wastewater right after the formation. Moreover, the gas-liquid interfacial area should be as large as possible to increase the decolorization rate. The arrangement of the present wastewater treatment system capable of immediately dispersing the plasmatic gas as tiny bubbles makes it possible to effectively decolorize the dyeing wastewater alongside consuming less amount of electrical energy. The effect of discharge power, gas flow rate, dissolved anion and initial dye concentration on the decolorization was examined with dry air for the creation of plasma and amaranth as an azo dye. At a gas flow rate of $1.5Lmin^{-1}$, the good contact between the plasmatic gas and the wastewater was achieved, resulting in rapid decolorization. For an initial dye concentration of $40.2{\mu}molL^{-1}$ (volume : 0.8 L; discharge power : 3.37 W), it took about 25 min to attain a decolorization efficiency of above 99%. Besides, the decolorization rate increased with decreasing the initial dye concentration or increasing the discharge power. The presence of chlorine anion appeared to slightly enhance the decolorization rate, whereas the effect of dissolved nitrate anion was negligible.

The field emission characteristics of an oxidized porous polysilicon field emitter using Pt/Ti emitter-electrode (Pt/Ti 전극을 사용한 산하된 다공질 폴리 실리콘 전계방출소자의 특성)

  • Han Sang-Kug;Park Keun-Yong;Choi Sie-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-30
    • /
    • 2005
  • In this paper, OPPS(oxidized porous poly-silicon) field emitters were fabricated by using various emitter-electrode metal and these electron emission characteristics were investigated for different thermal annealing effects. The addressed OPPS field emitter with Pt/Ti emitter electrode annealed at $300^{\circ}C$-1hr showed the efficiency of $2.98\%$ at $V_{ps}$=12 V and one annealed at $350^{\circ}C$-1hr showed the highest efficiency of $3.37\%$at $V_{ps}$=16V. They are resulted from the improvement of interfacial contact characteristics of thin emitter metal to an oxidized porous poly-silicon and the decrease of electrical resistance of emitter metal. The brightness of the OPPS field emitter increases linearly in $V_{ps}$ and after oxidation process for $900^{\circ}C$-50min, the brightness of the OPPS field emitter with the as-deposited Pt/Ti emitter electrode was 3600 cd/$m^2$ at the $V_{ps}$=15 V, 6260 cd/$m^2$ at the $V_{ps}$=20 V. Thermal treatment improved the adhesion between the Ti buffer layer and the oxidized porous poly-silicon and also played an important role in the uniform distribution of electric field to the emitter electrode.

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.