• 제목/요약/키워드: Interfacial Interaction

검색결과 165건 처리시간 0.024초

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Interfacial Electronic Structure of Bathocuproine and Al: Theoretical Study and Photoemission Spectroscopy

  • Lee, Jeihyun;Kim, Hyein;Shin, Dongguen;Lee, Younjoo;Park, Soohyung;Yoo, Jisu;Jeong, Junkyeong;Hyun, Gyeongho;Jeong, Kwangho;Yi, Yeonjin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.169-169
    • /
    • 2014
  • Interfacial electronic structure of bathocuproine and Al was investigated using in-situ photoemission spectroscopy and density functional theory (DFT) calculations. Bathocuproine is used for exciton blocking and electron transport material in organic photovoltaics and Al is typical cathode material. When thin thickness of Al was thermally evaporated on BCP, gap states were observed by ultraviolet photoemission spectroscopy. The closest gap state yielded below 0.3 eV from Fermi level. By x-ray photoemission spectroscopy, interaction of Al with nitrogen of BCP was observed. To understand the origin of gap states, DFT calculation was carried out and gap states was verified with successive calculation of interaction of Al and nitrogen of BCP. Furthermore, emergency of another state above Fermi level was observed. Remarkable reduction of electron injection barrier between Al and BCP, therefore, is possible.

  • PDF

Realistic adsorption behaviors of the copper onto the functionalized CNTs

  • 박미나;김병현;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.476-476
    • /
    • 2011
  • Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The interfacial strength between CNT and metal matrix is thus one of the key factors for successful development of the CNT/metal composites. Defective or functionalized CNT has been considered to enhance the interfacial strength of nanocomposites. In the present work, we design the various realistic hybrid structures of the single wall CNT/Cu complexes and characterize the interaction between single wall CNTs and Cu nano-particle and Cu13 cluster using first principle calculations. The characteristics of functionalized CNTs with various surface functional groups, such as -COOH, -OH, and -O interacting with Cu are investigated. We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and Cu. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT/Cu composite.

  • PDF

Topological Analysis on the Spinodal Decomposition and Interfacial Tension of Polymer-Solvent Systems

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권3호
    • /
    • pp.269-277
    • /
    • 1995
  • A topological theory has been introduced to extend the theory of Balsara and Nauman to evaluate the entropy of in homogeneous polymer solutions. Previous theories have considered only the terms about the displacement of junction points, while the present theory has obtained a more complete expression for the entropy by adding the topological interaction terms between strands. There have been predicted the characteristics of the spinodal decomposition and the interfacial tension of polymer solutions from the resultant expression. It is exposed that the theoretically predictive values show good agreement with the experimental data for polymer solutions.

경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석 (Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil)

  • 남상혁;변근주;송하원;박성민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

Compatibility at Polymer/Polymer Mixture Interfaces in the Presence of Solvent

  • Yoon, Kyung-Sup;Park, Hyung-Suk;Lee, Jo-Woong;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권3호
    • /
    • pp.214-221
    • /
    • 1994
  • We present some results obtained from theoretical study on a non-symmetrical A/BC polymeric system including solvent which consists of two phases, a polymeric phase A on one side and a mixture of polymers B (as a compatibilizer) and C on the other in the presence of a solvent. By employing the functional integral techniques we derive the mean-field equations and solve them numerically to deduce the physical properties of the interface involving the polymers and solvent concentration profiles in the limit that molecular weights of all the polymers involved tend to infinity. The calculations are performed for typical values of the Flory interaction parameters and for the volume fraction of polymer B in the asymptotic phase and of solvent. In the polymers/solvent blend under consideration the interfacial adsorption of polymer B, the solvent concentration, and degrees of the specific interaction between the polymers are found to play important roles in modification of the interfacial properties.

Improvement of the Wear Resistance of PP using Montmorillonite

  • Kim, Jae June;Ryu, Sung Hun;Oh, Jin Young
    • Elastomers and Composites
    • /
    • 제57권2호
    • /
    • pp.40-47
    • /
    • 2022
  • The effects of maleic-anhydride-grafted polypropylene (PP-g-MAH) and montmorillonite (MMT) on the wear resistance of polypropylene (PP) were investigated. The surface of MMT was modified with 3-aminopropyltriethoxysilane, and the interfacial interaction between PP and MMT was improved using PP-g-MAH. Fourier-transform infrared spectroscopy was used to confirm that silane was grafted on the surface of MMT. The Taber abrasion test and scanning electron microscopy were used to determine the wear resistance and observe the surface morphology of PP, respectively, after wear testing. Energy-dispersive X-ray spectroscopy was used to compare the effects of PP-g-MAH and silane modification of MMT on the dispersion of MMT. The results indicated that silane was successfully grafted onto the surface of MMT. Moreover, the wear resistance of PP was improved by the addition of MMT. The wear resistance of PP composites comprising silane-modified MMT and PP-g-MAH was higher than those of other PP composites. This was attributed to silane improving the interfacial interaction between MMT and PP.

Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;She, Jun-Kuan;Zhang, Dan
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.297-311
    • /
    • 2016
  • Based on the distributed fiber optic sensing (DFOS) technique, plastic optical fibers (POFs) are attractive candidates to measure deformations of geotechnical structures because they can withstand large strains before rupture. Understanding the mechanical interaction between an embedded POF and the surrounding soil or rock is a necessary step towards establishing an effective POF-based sensing system for geotechnical monitoring. This paper describes a first attempt to evaluate the feasibility of POF-based soil deformation monitoring considering the POF-soil interfacial properties. A series of pullout tests were performed under various confining pressures (CPs) on a jacketed polymethyl methacrylate (PMMA) POF embedded in soil specimens. The test results were interpreted using a fiber-soil interaction model, and were compared with previous test data of silica optical fibers (SOFs). The results showed that the range of CP in this study did not induce plastic deformation of the POF; therefore, the POF-soil and the SOF-soil interfaces had similar behavior. CP was found to play an important role in controlling the fiber-soil interfacial bond and the fiber measurement range. Moreover, an expression was formulated to determine whether a POF would undergo plastic deformation when measuring soil deformation. The plasticity of POF may influence the reliability of measurements, especially for monitored geo-structures whose deformation would alternately increase and decrease. Taken together, these results indicate that in terms of the interfacial parameters studied here the POF is feasible for monitoring soil deformation as long as the plastic deformation issue is carefully addressed.