DOI QR코드

DOI QR Code

Improvement of the Wear Resistance of PP using Montmorillonite

  • Kim, Jae June (Department of Chemical Engineering, Kyung Hee University) ;
  • Ryu, Sung Hun (Department of Chemical Engineering, Kyung Hee University) ;
  • Oh, Jin Young (Department of Chemical Engineering, Kyung Hee University)
  • Received : 2022.04.11
  • Accepted : 2022.04.21
  • Published : 2022.06.30

Abstract

The effects of maleic-anhydride-grafted polypropylene (PP-g-MAH) and montmorillonite (MMT) on the wear resistance of polypropylene (PP) were investigated. The surface of MMT was modified with 3-aminopropyltriethoxysilane, and the interfacial interaction between PP and MMT was improved using PP-g-MAH. Fourier-transform infrared spectroscopy was used to confirm that silane was grafted on the surface of MMT. The Taber abrasion test and scanning electron microscopy were used to determine the wear resistance and observe the surface morphology of PP, respectively, after wear testing. Energy-dispersive X-ray spectroscopy was used to compare the effects of PP-g-MAH and silane modification of MMT on the dispersion of MMT. The results indicated that silane was successfully grafted onto the surface of MMT. Moreover, the wear resistance of PP was improved by the addition of MMT. The wear resistance of PP composites comprising silane-modified MMT and PP-g-MAH was higher than those of other PP composites. This was attributed to silane improving the interfacial interaction between MMT and PP.

Keywords

Acknowledgement

이 연구는 한국산업기술 평가관리원에서 주관하는 연구과제 (20012710)의 지원을 받아 수행되었습니다.

References

  1. R. A. Gandhi, K. Palanikumar, B. K. Ragunath, and J. P. Davim, "Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition", Mater. Des., 48, 52 (2013). https://doi.org/10.1016/j.matdes.2012.08.081
  2. H. Karian, "Handbook of polypropylene and polypropylene composites, revised and expanded", ed. by H. Karian, 2nd de, CRC press, 2003.
  3. J. I. Lee, B. J. Woo, S. L. Kim, J. E. Hong, and B. U. Nam, "Study on impact resistance, wear resistance and crystallization kinetics of polypropylene modified by complex cross-linkers", Polym. Korea, 44, 603 (2020). https://doi.org/10.7317/pk.2020.44.5.603
  4. K. Palanikumar, R. AshokGandhi, B. K. Raghunath, and V. Jayaseelan, "Role of calcium carbonate (CaCO3) in improving wear resistance of polypropylene (PP) components used in automobiles", Mater. Today Proc., 16, 1363 (2019). https://doi.org/10.1016/j.matpr.2019.05.237
  5. L. Yu, S. Yang, W. Liu, and Q. Xue, "An investigation of the friction and wear behaviors of polyphenylene sulfide filled wirh solid lubricants", J. Appl. Polym. Sci., 40, 1825 (2000).
  6. J. Wang, K. H. Hu, Y. F. Xu, and X. G. Hu, "Structural, thermal and tribological properties of intercalated polyoxymethylene/molybdenum disulfide nanocomposites", J. Appl. Polym. Sci., 110, 91 (2008). https://doi.org/10.1002/app.28519
  7. M. Amini, A. Ramazani, A. A. Varjouy, and M. Faghihi, "Effect of exfoliated molybdenum disulfide oxide on friction and wear properties of ultra high molecular weight polyethylene", Polym. Adv. Technol., 1 (2018).
  8. A. Dasari, Z. Z. Yu, Y. W. Mai, G. H. Hu, and J. Varlet, "Clay exfoliation and organic modification on wear of nylon 6 nanocomposites processed by different routes", CSTE, 65, 2314 (2005).
  9. J. C. Lin, "Compression and wear behavior of composites filled with various nanoparticles", Compos. Part B 38, 79 (2007). https://doi.org/10.1016/j.compositesb.2006.03.012
  10. K. G. Gatos, K. Kameo, and J. Karger-Kocsis, "On the friction and sliding wear of rubber/layered silicate nanocomposites", eXPRESS Polym. Lett., 1, 27 (2007). https://doi.org/10.3144/expresspolymlett.2007.6
  11. P. Svoboda, C. Zeng, H. Wang, L. J. Lee, and D. L. Tomasko, "Morphology and mechanical properties of polypropylene/organoclay nanocomposites", J. Appl. Polym. Sci., 85, 1562 (2002). https://doi.org/10.1002/app.10789
  12. M. L. Lopez-Quintanilla, S. Sanchez-Valdes, L. R. De Valle, and R. G. Miranda, "Preparation and mechanical properties of PP/PP-g-MA/Org-MMT nanocomposites with different MA content", Polym. Bull., 57, 385 (2006). https://doi.org/10.1007/s00289-006-0555-x
  13. W. Xu, G. Liang, W. Wang, S. Tang, P. He, and W. P. Pan, "PP-PP-g-MAH-Org-MMT nanocomposites. I. Intercalation behavior and microstructure", J. Appl. Polym. Sci., 88, 3225 (2003). https://doi.org/10.1002/app.11973
  14. S. K. Song, J. H. Kim, K. S. Hwang, and K. R. Ha, "Spectroscopic analysis of silica nanoparticles modified with silane coupling agent", Korean Chem. Eng. Res., 49, 181 (2011). https://doi.org/10.9713/kcer.2011.49.2.181
  15. M. Raji, M. E. M. Mekhzoum, D. Rodrigue, and R. Bouhfid, "Effect of silane functionalization on properties of polypropylene/clay nanocomposites", Compos. Part B: Eng., 146, 106 (2018). https://doi.org/10.1016/j.compositesb.2018.04.013
  16. Y. Y. Choi, S. H. Lee, and S. H. Ryu, "Effect of silane functionalization of montmorillonite on epoxy/montmorillonite nanocomposite", Polym. Bull., 63, 47 (2009). https://doi.org/10.1007/s00289-009-0068-5
  17. A. Qaiss, R. Bouhfid, and H. Essabir, "Characterization and use of coir, almond, apricot, argan, shells, and wood as reinforcement in the polymeric matrix in order to valorize these products", In Agricultural biomass based potential materials, Springer, Cham, 305 (2015).
  18. X. I. E. Yu-shan, T. A. N. Shao-zao, L. Ma-hua, and L. I. U. Ren-fu, "Structure and antibacterial activity of modified montmorillonite", Chem. Res. Chin. Univ., 26, 509 (2010).
  19. Z. Navratilova, P. Wojtowicz, L. Vaculikova, and V. Sugarkova, "Sorption of alkylammonium cations on montmorillonite", Acta Geodynamica et Geomaterialia, 4, 59 (2007).
  20. S. Bhattacharya and M. Aadhar, "Studies on preparation and analysis of organoclay nano particles", Res. J. Eng. Sci., 2278, 9472 (2014).
  21. R. Pena-Alonso, F. Rubio, J. Rubio, and J. L. Oteo, "Study of the hydrolysis and condensation of γ-Aminopropyltriethoxysilane by FT-IR spectroscopy", J. Mater. Sci., 42, 595 (2007). https://doi.org/10.1007/s10853-006-1138-9
  22. N. Majoul, S. Aouida, and B. Bessais, "Progress of porous silicon APTES-functionalization by FTIR investigations", Appl. Surf. Sci., 331, 388 (2015). https://doi.org/10.1016/j.apsusc.2015.01.107
  23. S. R. Culler, H. Ishida, and J. L. Koenig, "Structure of silane coupling agents adsorbed on silicon powder", J. Colloid Interface Sci., 106, 334 (1985). https://doi.org/10.1016/S0021-9797(85)80007-2
  24. A. M. Shanmugharaj, K. Y. Rhee, and S. H. Ryu, "Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials", J. Colloid Interface Sci., 298, 854 (2006). https://doi.org/10.1016/j.jcis.2005.12.049
  25. Z. Jin, L. Du, C. Zhang, Y. Sugiyama, W. Wang, G. Palui, and H. Mattoussi, "Modification of poly(maleic anhydride)-based polymers with H2N-R nucleophiles: Addition or substitution reaction?", Bioconjug. Chem., 30, 871 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00008
  26. H. G. Wang, L. Q. Jian, B. L. Pan, J. Y. Zhang, S. R. Yang, and H. G. Wang "Mechanical and tribological behaviors of polyamide 66/ultra high molecular weight polyethylene blends", Polym. Eng. Sci., 47, 738 (2007). https://doi.org/10.1002/pen.20748
  27. L. Coleman, J. Bork, and H. Dunn, "Reaction of primary aliphatic amines with maleic anhydride", J. Org. Chem., 24, 135 (1959). https://doi.org/10.1021/jo01083a626
  28. L. X. Wang, J. F. Li, H. B. Zhang, and L. Ren, "Friction and wear behavior of unsaturated polyester/montmorillonite intercalated nanocomposites", Mocaxue Xuebao (Tribology) (China), 23, 197 (2003).
  29. B. Mu, Q. Wang, T. Wang, H. Wang, and L. Jian, "The friction and wear properties of clay filled PA66", Polym. Eng. Sci., 48, 203 (2008). https://doi.org/10.1002/pen.20956
  30. B. Mu, Q. Wang, T. Wang, H. Wang, L. Jian, and X. Pei, "Preparation and friction properties of PBT/MMT composites", Polym. Compos., 30, 619 (2009). https://doi.org/10.1002/pc.20596
  31. T. Jesionowski, K. Bula, J. Janiszewski, and J. Jurga, "The influence of filler modification on its aggregation and dispersion behaviour in silica/PBT composite", Compos. Interfaces, 10, 225 (2003). https://doi.org/10.1163/156855403765826883
  32. W. Yuan, F. Wang, Z. Chen, C. Gao, P. Liu, Y. Ding, and M. Yang, "Efficient grafting of polypropylene onto silica nanoparticles and the properties of PP/PP-g-SiO2 nanocomposites", Polymer, 151, 242 (2018). https://doi.org/10.1016/j.polymer.2018.07.060
  33. W. Brostow, M. Dutta, J. Ricardo de Souza, and P. Rusek, A. Marcos de Medeiros and E. N. Ito, "Nanocomposites of poly (methyl methacrylate)(PMMA) and montmorillonite (MMT) Brazilian clay: A tribological study", eXPRESS Polym. Lett., 4, (2010).
  34. A. Akinci, H. Akbulut, and F. Yilmaz, "The effect of the red mud on polymer crystallization and the interaction between the polymer-filler", Polym. Plast. Technol. Eng., 46, 31 (2007). https://doi.org/10.1080/03602550600916258
  35. G. Bertalan, G. Marosi, P. Anna, I. Ravadits, I. Csontos, and A. Toth, "Role of interface modification in filled and flame-retarded polymer systems", Solid State Ion., 141, 211 (2001). https://doi.org/10.1016/S0167-2738(01)00795-0
  36. M. Nofar, W. Zhu, C. B. Park, and J. Randall, "Crystallization kinetics of linear and long-chain-branched polylactide", Ind. Eng. Chem. Res., 50, 13789 (2011). https://doi.org/10.1021/ie2011966