• Title/Summary/Keyword: Interface temperature

Search Result 2,044, Processing Time 0.036 seconds

Growth of GaAs/AlGaAs Superlattice and HEMT Structures by MOCVD (MOCVD에 의한 GaAs/AlGaAs 초격자 및 HEMT 구조의 성장)

  • Kim, Moo-Sung;Kim, Yong;Eom, Kyung-Sook;Kim, Sung-Il;Min, Suk-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • We developed the technologies of wuperlattice and HEMT structures grown by MOCVD, and their characterization. In the case of GaAs/AlGaAs superlattice, the periodicity, interface abruptness and Al compositional uniformity were confirmed through the shallow angle lapping technique and double crystal x-ray measurement. Photoluminesence spectra due to quantum size effect of isolated quantum wells were also observed. The heterojunction abruptness was estimated to be within 1 monolayer fluctuation by the analysis of the relation between PL FWHM(Full Width at Half Maximum) and well width. HEMT structure was successfully grown by MOCVD. The 2 dimensional electron gas formation at heterointerface in HEMT structure were evidenced through the C-V profile, SdH (Shubnikov-de Haas)oscillation and low temperature Hall measurement. Low field mobility were as high as $69,000cm^2/v.sec$ for a sheet carrier density of $5.5{\times}10^{11}cm^-2$ at 15K, and $41,200cm^2/v.sec$ for a sheet carrier density of $6.6{\times}10^{11}cm^-2$ at 77K. In addition, well defined SdH oscillation and quantized Hall plateaues were observed.

  • PDF

A Study on The Solderability of Micro-BGA of Sn-3.5Ag-0.7Cu (Sn-3.5Ag-0.7Cu Micro-BCA의 Soldering성 연구)

  • ;;;;Kozo Jujimoto
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.55-61
    • /
    • 2000
  • Sn-37Pb and Sn-3.5Ag-0.7Cu solder balls of 0.3 mm diameter were reflow soldered with the variation of soldering peak temperature and conveyer speed of reflow machine. The peak temperatures far soldering were changed in the range of 220~$240^{\circ}C$ for Sn-37Pb and 230~$260^{\circ}C$ for Sn-3.5Ag-0.7Cu. As the results of experiments, optimum soldering condition for Sn-37Pb was $230^{\circ}C$ of soldering temp., 0.7~0.8 m/min of conveyer speed. The optimum condition for the Sn-3.5Ag-0.7Cu was $250^{\circ}C$ and 0.6 m/min. The maximum shear strength for the soldered joints of Sn-37Pb was 555 gf and of Sn-3.5Ag-0.7Cu was 617 gf. Thickness of the intermetallic compound Cu6Sn5 on the soldered interface was 1.13~1.45 $\mu\textrm{m}$ for Sn-37Pb and 2.5~4.3 $\mu\textrm{m}$ for Sn-3.5Ag-0.7Cu.

  • PDF

Preparation of MWCNTs/Poly(methyl methacrylate) Composite Particles via the Emulsion Polymerization of Methyl Methacrylate Using MWCNTs Modified by Silanization Reaction and Their Morphological Characteristics (실란화 반응으로 표면 개질된 다중벽 탄소나노튜브(MWCNTs)와 Methyl Methacrylate의 유화중합을 통한 MWCNTs/Poly(methyl methacrylate) 복합 입자 제조 및 그 형태학적 특성)

  • Kwon, Jaebeom;Park, Seonghwan;Kim, Sunghoon;Jo, Jieun;Han, Changwoo;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.329-337
    • /
    • 2015
  • In this study, multi-walled carbon nanotubes (MWCNTs) were oxidized with a mixture of nitric acid and sulfuric acid. After oxidation, oxidized MWCNTs were treated with thionyl chloride ($SOCl_2$) and 1,4-butanediol (BD) in sequence at room temperature to introduce hydroxyl groups on the surface of MWCNTs. The prepared MWCNT-OH was silanized with 3-methacryloxypropyltrimethoxylsilane (MPTMS) to make MWCNT-MPTMS. The MWCNT-MPTMS was used as fillers in emulsion polymerization to make MWCNT-MPTMS/PMMA composite particles with 3 kinds of emulsifiers, hexadecyltrimethylammoniumbromide (CTAB) as a cationic, sodium dodecylbenzene sulfonate (SDBS) as an anionic and polyethylene glycol tert-octylphenyl ether (Triton X-114) as a nonionic emulsifier. Morphologies of composite emulsions were confirmed by a particle size analyzer (PSA) and a scanning electron microscope (SEM). Morphologies of emulsion polymerized MWCNT-MPTMS/PMMA with SDBS showed more uniform particle size distribution compared to those of other two emulsifiers used emulsions. MWCNT-MPTMS/PMMA showed $3.4^{\circ}C$ higher $T_g$ compared to pristine MWCNT/PMMA due to covalent bond formation at interface of MWCNT-MPTMS and PMMA.

Enhancement of light extraction efficiency in vertical light-emitting diodes with MgO nano-pyramids structure

  • Son, Jun-Ho;Yu, Hak-Ki;Lee, Jong-Lam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.16-16
    • /
    • 2010
  • GaN-based light-emitting diodes (LEDs) are attracting great interest as candidates for next-generation solid-state lighting, because of their long lifetime, small size, high efficacy, and low energy consumption. However, for general illumination applications, the external quantum efficiency of LEDs, determined by the internal quantum efficiency (IQE) and the light extraction efficiency, must be further increased. The IQE is determined by crystal quality and epitaxial layer structure and high value of IQE more than 70% for blue LEDs have been already reported. However, there is much room for improvement of light extraction efficiency because most of the generated photons from active layer remain inside LEDs by total internal reflection at the interface of semiconductor with air due to the high refractive index difference between LEDs epilayer (for GaN, n=2.5) and air (n=1). The light confining in LEDs will be reabsorbed by the metal electrode or active layer, reducing the efficacy of LEDs. Here, we present the first demonstration of enhanced light extraction by forming a MgO nano-pyramids structure on the surface of vertical-LEDs. The MgO nano-pyramids structure was successfully fabricated at room temperature using conventional electron-beam evaporation without any additional process. The nano-sized pyramids of MgO are formed on the surface during growth due to anisotropic characteristics between (111) and (200) plane of MgO. The ZnO layer with quarter-wavelength in thickness is inserted between GaN and MgO layers to increase the critical angle for total internal reflection, because the refractive index of ZnO (n=1.94) could be matched between GaN (n=2.5) and MgO (n=1.73). The MgO nano-pyramids structure and ZnO refractive-index modulation layer enhanced the light extraction efficiency ofV-LEDs with by 49%, comparing with the V-LEDs with a flat n-GaN surface. The angular-dependent emission intensity shows the enhanced light extraction through the side walls of V-LEDs as well as through the top surface of the n-GaN, because of the increase in critical angle for total internal reflection as well as light scattering at the MgO nano-pyramids surface.

  • PDF

THE SEALING ABILITY OF OBTURATION TECHNIQUES IN OPEN APEX (개방 근첨 치아의 근관 충전방법에 따른 치근단 폐쇄효과에 관한 연구)

  • So, Hyun;Choi, Ho-Young;Choi, Kyung-Kyu;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.435-445
    • /
    • 2000
  • The purpose of this study was to compare the leakage of four different obturation techniques in conjunction with immediate apical barrier of ${\beta}$-tricalcium phosphate(TCP) in teeth with open apex. Eighty single-rooted human premolar teeth were prepared and sectioned horizontally, so maximum diameter in apex was 4mm. Apical defects that were similar to open apex, were created with #1/2 round bur and SF104R bur. The apical foramen were opened to a size 80 file extended 3mm beyond the apex. The teeth were placed into the oasis block soaked saline to simulate periapical tissue often associated with pulpless teeth and received apical barriers consisting of TCP followed by obturation using lateral condensation technique, vertical condensation technique, continuous wave technique and thermoplasticized gutta-percha injection technique. Two unobturated teeth served as positive and negative controls. Teeth were immersed in resorcinol-formaldehyde resin for S days at $4^{\circ}C$, and the resin was allowed to polymerize completely for 4 days at room temperature. Teeth were then sectioned horizontally at 1.5mm(level 1), 2.5mm(level 2) and 3.5mm(level 3) from the apex, and examined under a stereomicroscope at ${\times}40$ magnification. The photographs were taken at ${\times}40$ magnification of the filling in each level and scanned. The leakage length in tooth/resin interface was measured at each of the three levels. Each ratio of leakage was obtained by calculating the ratio of the leakage length of canal wall infiltrated with resin to the total length of the canal and was analyzed statistically(One-way ANOVA and Scheffe test). The result were as follows : 1. At the level 1, there was the least leakage in the thermoplasticized gutta-percha injection technique group(group 4), but there was statistically significant(p<0.05). 2. At the level 2, there was the least leakage in the thermoplasticized gutta-percha injection technique group(group 4), and the most leakage in the continuous wave technique group(group 3). There was statistically significant difference between the thermoplasticized gutta-percha injection technique group and the continuous wave technique group(p<0.05). 3. At the level 3, there was the least leakage in the thermoplasticized gutta-percha injection technique group(group 4), but there were no statistically significant differences between other groups(p>0.05). These results suggest that thermoplasticized gutta-percha injection technique which had 1mm apical gutta-percha matrix after the formation of TCP apical barrier, can demonstrate favorable apical sealing.

  • PDF

Growth of Blue Light Emitting InGaN/GaN MQWs by Metalorganic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 청색 발광 InGaN/GaN MQWs의 성장에 관한 연구)

  • Kim, Dong-Joon;Moon, Yong-Tae;Song, Keun-Man;Park, Seong-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.11-17
    • /
    • 2000
  • We investigated the growth of InGaN/GaN multiple quantum wells (MQWs) structures which emit blue light. The samples were grown in a low pressure metalorganic chemical vapor deposition system. We examined InGaN/GaN MQWs by varying growth temperatures and thicknesses of InGaN well and GaN barrier layers in MQWs. Especially, the thickness of GaN barrier in InGaN/GaN MQWs was found to severely affect the interfacial abruptness between InGaN well and GaN barrier layers. The higher order satellite peaks in the high resolution x-ray diffraction spectra and the high resolution cross sectional transmission electron microscope image of MQW structrues revealed that the interface between InGaN and GaN layers was very abrupt. Room-temperature photoluminescence spectra also showed a blue emission from InGaN/GaN MQWs at the wavelength of 463.5nm with a narrow full width at half maximum of 72.6meV.

  • PDF

The Characteristic Improvement of Photodiode by Schottky Contact (정류성 접합에 의한 광다이오드의 특성 개선)

  • Hur Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1448-1452
    • /
    • 2004
  • In this paper, a photodiode capable of obtaining a sufficient photo/ dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an Cr thin film formed as a lower electrode over the glass substrate, Cr silicide thin film(∼l00$\AA$) ) formed as a schottky barrier over the Cr thin film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the Cr silicide thin film. Transparent conduction film ITO (thickness 100nm) formed as an upper electrode over the hydro-generated amorphous silicon film is then deposited in pure argon at room temperature for the Schottky contact and light window. The high quality Cr silicide thin film using annealing of Cr and a-Si:H is formed and analyzed by experiment. We have obtained the film with a superior characteristics. The dark current of the ITO/a-Si:H Schottky at a reverse bias of -5V is ∼3$\times$IO-12 A/un2, and one of the lowest reported, hitherto. AES(Auger Electron Spectroscophy) measurements indicate that this notable improvement in device characteristics stems from reduced diffusion of oxygen, rather than indium, from the ITO into the a-Si:H layer, thus, preserving the integrity of the Schottky interface. The spectral response of the photodiode for wavelengths in the range from 400nm to 800nm shows the expected behavior whereby the photocurrent is governed by the absorption characteristics of a-Si:H.

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

An Automatic Identification System of Biological Resources based on 2D Barcode and UCC/EAN-128 (2차원 바코드와 UCC/EAN-128을 이용한 생물자원 자동인식시스템)

  • Chu, Min-Seok;Ryu, Keun-Ho;Kim, Jun-Woo;Kim, Hung-Tae;Han, Bok-Ghee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.861-872
    • /
    • 2008
  • As rapid development of computing environment, field of automatic identification research which interoperates with various physical objects and digital information is making active progress. Although the automatic identification system is widely used in various industries, application of automatic identification system in the field of medical health doesn't reach other industry. Therefore research in medical health supplies such as medical equipment, blood, human tissues and etc is on progress. This paper suggests the application of automatic identification technology for biological resources which is core research material in human genome research. First of all, user environment requirements for the introduction of automatic identification technology are defined and through the experiments and research, barcode is selected as a suitable tag interface. Data Matrix which is 2D barcode symbology is chosen and data schema is designed based on UCC/EAN-128 for international defecto standard. To showapplicability of proposed method when applied to actual environment, we developed, tested and evaluated application as following methods. Experiments of barcode read time at 196 and 75 below zero which is actual temperature where biological resources are preserved resulted read speed of average of 1.6 second and the data schema satisfies requirements for the biological resources application. Therefore suggested method can provide data reliability as well as rapid input of data in biological resources information processing.

Mechanical Properties of Natural Rubber/Acrylonitrile-Butadiene Rubber Blends and Their Adhesion Behavior with Steel Cords (Natural Rubber/Acrylonitrile-Butadiene Rubber 블렌드의 기계적 물성과 강선과의 접착거동)

  • Sohn, Bong-Young;Nah, Chong-Woon
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Mechanical properties and their adhesion behavior with zinc- and brass-plated steel cords of natural rubber/acrylonitrile-butadiene blend compounds were investigated as a function of blend ratio. The Mooney viscosity and stress relaxation time were found to be lowered with increasing NBR content. Tensile modulus generally increased with increasing NBR content. Tensile stress at break stayed constant up to about 40 phr and showed minimum at $50{\sim}60 phr$, and thereafter increased with increasing NBR content. Strain at break decreased linearly below 50 phr, and above the level it showed nearly constant value. Based on the abrupt drops in elastic modulus and tan ${\delta}$ peak, the glass transition temperature of NR and NBR were found to be -55 and $-10^{\circ}C$, respectively. In the case of NR/NBR blend compounds, two distinct transition points were observed and each transition position was not affected by NBR level indicating an incompatible nature of NR/NBR blend system. The pullout force and rubber coverage decreased to the level of about 40% to that of pure m compound, when the 50 phr of NR was replaced by NBR. However, the pure NBR compound showed the comparable adhesion performance with NR(${\sim}90%$). The sulfur concentration was found to become lower with the increased NBR content at the adhesion interface based on the Auger spectrometer results, representing a lack of adhesion layer formation, and this was explained for a possible cause of low adhesion performance with adding NBR.

  • PDF