• Title/Summary/Keyword: Interface stability

Search Result 761, Processing Time 0.03 seconds

The Study of Fluoride Film Properties for TFT gate insulator application (박막트랜지스터 게이트 절연막 응용을 위한 불화막 특성연구)

  • Kim, Do-Young;Choi, Suk-Won;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.737-739
    • /
    • 1998
  • Gate insulators using various fluoride films were investigated for thin film transistor applications. Conventional oxide containing materials exhibited high interface states, high $D_{it}$ gives an increased threshold voltage and poor stability of TFT. To improve TFT performances, we must reduce interface trap charge density between Si and gate insulator. In this paper, we investigated gate insulators such as such as $CaF_2$, $SrF_2$, $MgF_2$ and $BaF_2$. These materials exhibited an improvement in lattice mismatch, difference in thermal expansion coefficient, and electrical stability MIM and MIS devices were employed for an electrical characterization and structural property examination. Among the various fluoride materials, $CaF_2$ film showed an excellent lattice mismatch of 0.737%, breakdown electric field higher than 1.7MV/cm and leakage current density of $10^{-6}A/cm^2$. This paper probes a possibility of new gate insulator material for TFT application.

  • PDF

Synthesis, Curing and Properties of Silicone-Epoxies

  • Huang, Wei;Yuan, Youxue;Yu, Yunzhao
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.39-44
    • /
    • 2006
  • A new kind of silicone-epoxy composite is reported in this research. The silicone-epoxy resin was synthesized by the hydrosilylation of tetramethycyclotetrasiloxane and 4-vinyl-1-cyclohexene 1,2-epoxy with a high reaction yield. It was found that the obtained silicone-epoxy resin shows a high reactive activity to the aluminum complex-silanol catalyst. The resin could be cured under the catalysis of $(Al(acac)_3/Ph_2Si(OH)_2$ at a concentration below 0.1 wt% to give a hard cured resin showing excellent optical clarity, UV resistance and thermal stability. It was also found that the Si-H groups facilitated the curing reaction and the silicone-epoxy resin bearing Si-H group could be cured effectively even if $Ph_2Si(OH)_2h$ was absent. Moreover, the UV resistance and thermal stability were improved significantly by the introduction of Si-H groups. This is possibly due to the reductive property of Si-H groups which can annihilate radical and peroxide effectively. This kind of silicone-containing epoxy composite might have very promising applications as optical resin, optical adhesive and encapsulation materials for electronic devices.

  • PDF

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • Gang, Tae-Seong;Gu, Ja-Hyeon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF

Planning of HVDC System Applied to Korea Electric Power Grid

  • Choi, DongHee;Lee, Soo Hyoung;Son, Gum Tae;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2018
  • This paper proposes pre-analysis on planning of high-voltage direct current (HVDC) transmission system applied to Korea electric power grid. HVDC transmission system for interface lines has been considered as alternative solution for high-voltage AC transmission line in South Korea since constructing new high-voltage AC transmission lines is challenging due to political, environmental and social acceptance problems. However, the installation of HVDC transmission system as interface line in AC grid must be examined carefully. Thus, this paper suggests three scenarios to examine the influences of the installation of HVDC transmission system in AC grid. The power flow and contingency analyses are carried out for the proposed scenarios. Power reserves in metro area are also evaluated. And then the transient stability analysis focusing on special protection scheme (SPS) operations is analyzed when critical lines, which are HVDC lines or high voltage AC lines, are tripped. The latest generic model of HVDC system is considered for evaluating the impacts of the SPS operations for introducing HVDC system in the AC grid. The analyses of proposed scenarios are evaluated by electromechanical simulation.

Mass spectrometry analysis system with integrated micro electrospray ionization emitter for peptide detection (펩타이드 질량 분석을 위한 전기 이온화 분사기의 제작 및 성능 평가)

  • Kim, Min-Su;Joo, Hwang-Soo;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1534-1535
    • /
    • 2007
  • This paper describes a novel microfluidic device with a microfabricated electrospray source for a sheathless electrospray ionization interface to a mass spectrometer. This electrospray ionization-mass spectrometry (ESI-MS) device consists of a triangular-shaped metal emitter, allowing the generation of an efficient electrospray for peptide detection, and microfluidic channels monolithically in a glass microchip. The performance of the proposed interface was evaluated by opimizing its experimental condition and spraying standard peptides. The spraying has high signal strength and stability, with a relative standard deviation of 2.9% and singly-charged and doubly-charged peaks of the peptides were successfully detected. The metal emitter source showed a good performance to be comparable to commercially available emitters in signal strength and stability.

  • PDF

High temperature Friction and Wear of Friction Material; The Effect of the Relative Amount of Graphite and Zirconium Silicate (ZrSiO$_4$) (흑연과 지르콘의 상대적 함량에 따른 마찰재의 고온 마찰 및 마모특성)

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Tribological behavior of novolac resin-based friction materials with three different relative amounts of graphite and zirconium silicate was investigated by using a pad-on-disk type friction tester. The goal of this paper is to examine the effects of the relative amount of a lubricant and an abrasive in the automotive friction material on friction and wear characteristics at elevated temperature. Friction and wear of friction materials were affected by the existence of transfer film(3$\^$rd/ body layer) at friction interface and the composition of friction material, especially lubricant amount. The friction material with higher content of graphite indicated homogenized and durable transfer film, and resulted in stable friction coefficient regardless of the increase in friction heat. The experimental result also showed that the higher concentration of ZrSiO$_4$ in friction material aggravated friction stability and wear resistance due to the higher friction heat generated at fiction interface during high temperature friction test.

An Development of Leakage Current Sensing Module of the System on Chip Type Under Consideration of Electromagnetic Interface in Power Trunk Line (전력간선에서의 전자파 장애를 고려한 원칩형 누설전류 원격 검출단말기의 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.377-384
    • /
    • 2009
  • In this paper, leakage current sensing module of SoC(System on Chip)type and real time monitoring system under consideration of electromagnetic interface in power trunk line are developed. The first, leakage current sensing module of SoC type under consideration of electromagnetic interface is developed, and the developed sensing module of SoC type is composed of leakage sensing part, power supply part, interface part, communication part, AD(Alternating current to Direct current)convert part and amplification part. And also the electromagnetic compatibility is evaluated by conduction and radiation of EMI(Electromagnetic Interference) for developed sensing module. The developed system can have confidence, stability and do energy saving under mixed electric circumstance of the low voltage communication device and high voltage equipment. The second, the real time remote monitoring system is developed using designed wire and wireless communication module with leakage current sensing module of SoC type. The developed real time remote monitoring system can monitor sensing state, occurrence state of leakage current and alarm for each step etc.. And the device configuration, PCB layout for leakage current sensing module of system on chip type and the experiment configuration in consideration of EMI are presented. Also the measurement results of conduction and radiation for EMI are presented.

Stability of the Grain Configurations of Thin Films-a Model for Agglomeration (박막내 결정립 배열의 열적 불안정성1)-응집 모델)

  • Na, Jong-Ju;Park, Jung-Geun
    • 연구논문집
    • /
    • s.27
    • /
    • pp.183-200
    • /
    • 1997
  • We have calculated the energy of three distinct grain configurations, namely completely connected, partially connected and unconnected configurations, evolving during a spheroidization of polycrystalline thin film by extending a geometrical model due to Miller et al. to the case of spheroidization at both the surface and film-substrate interface. "Stabilitl" diagram defining a stable region of each grain configuration has been established in terms of the ratio of grain size to film thickness vs. equilibrium wetting or dihedral angles at various interface energy conditions. The occurrence of spheroidization at the film-substrate interface significantly enlarges the stable region of unconnected grain configuration thereby greatly facilitating the occurrence of agglomeration. Complete separation of grain boundary is increasingly difficult with a reduction of equilibrium wetting angle. The condition for the occurrence of agglomeration differs depending on the equilibrium wetting or dihedral angles. The agglomeration occurs, at low equilibrium angles, via partially connected configuration containing stable holes centered at grain boundary vertices, whereas it occurs directly via completely connected configuration at large equilibrium angles except for the case having small surface and/or film-substrate interface energy. The initiation condition of agglomeration is defined by the equilibrium boundary condition between the partially connected and unconnected configurations for the former case, whereas it can, for the latter case, largely deviate from the equilibrium boundary condition between the completely connected and unconnected configurations because of the presence of a finite energy barrier to overcome to reach the unconnected grain configuration.

  • PDF

The electrical and optical Properties of the OELD using the Cz-TPD for cathode interface layer (음극접합층으로 Cz-TPD를 사용한 OELD의 전기적 광학적 특성)

  • Choi, W.J.;Lim, M.S.;Jeong, D.Y.;Lee, J.K.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.124-127
    • /
    • 2002
  • In this study, The cathode interface layer (CIL) was investigated using aromatic diamine derivatives. Cz-TPD (4,4'-biscarbazolyl(9)-biphenyl) used in the cathode interface layers is investigated emition charcaracteristics at the green organic electroluminescent devices. TPD (N,N' -dyphenyl -N -N'-bis (3-methy phenyl)-1,1' -biphenyl-4,4' -diamine) as the hole transformer layer and $Alq_{3}:tris$ (8-hyd-roxyquinoline) aluminium) as the electron transport layer and emiting layer maded use of the organic electroluminescent device. The Organic Electroluminescent Device with Ag cathode and CIL of Cz-TPD(4,4'-biscarbazolyl(9)-biphenyl) showed good EL characteristics compare to a conventional Mg:Ag device and also an improved storage stability. [1] As the change in MgAg, Cz-TPD/Ag, Ag at the chthode, the electrical and optical charcaracteriseics were investigated.

  • PDF