• Title/Summary/Keyword: Interface resistance

Search Result 894, Processing Time 0.024 seconds

Normalized Contact Force to Minimize "Electrode-Lead" Resistance in a Nanodevice

  • Lee, Seung-Hoon;Bae, Jun;Lee, Seung Woo;Jang, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2415-2418
    • /
    • 2014
  • In this report, the contact resistance between "electrode" and "lead" is investigated for reasonable measurements of samples' resistance in a polypyrrole (PPy) nanowire device. The sample's resistance, including "electrode-lead" contact resistance, shows a decrease as force applied to the interface increases. Moreover, the sample's resistance becomes reasonably similar to, or lower than, values calculated by resistivity of PPy reported in previous studies. The decrease of electrode-lead contact resistance by increasing the applying force was analyzed by using Holm theory: the general equation of relation between contact resistance ($R_H$) of two-metal thin films and contact force ($R_H{\propto}1/\sqrt{F}$). The present investigation can guide a reliable way to minimize electrode-lead contact resistance for reasonable characterization of nanomaterials in a microelectrode device; 80% of the maximum applying force to the junction without deformation of the apparatus shows reasonable values without experimental error.

Characterization of a Thermal Interface Material with Heat Spreader (전자부품의 방열방향에 따른 접촉열전도 특성)

  • Kim, Jung-Kyun;Nakayama, Wataru;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2010
  • The increasing of power and processing speed and miniaturization of central processor unit (CPU) used in electronics equipment requires better performing thermal management systems. A typical thermal management package consists of thermal interfaces, heat dissipaters, and external cooling systems. There have been a number of experimental techniques and procedures for estimating thermal conductivity of thin, compressible thermal interface material (TIM). The TIM performance is affected by many factors and thus TIM should be evaluated under specified application conditions. In compact packaging of electronic equipment the chip is interfaced with a thin heat spreader. As the package is made thinner, the coupling between heat flow through TIM and that in the heat spreader becomes stronger. Thus, a TIM characterization system for considering the heat spreader effect is proposed and demonstrated in detail in this paper. The TIM test apparatus developed based on ASTM D-5470 standard for thermal interface resistance measurement of high performance TIM, including the precise measurement of changes in in-situ materials thickness. Thermal impedances are measured and compared for different directions of heat dissipation. The measurement of the TIM under the practical conditions can thus be used as the thermal criteria for the TIM selection.

Mixing effect on Properties of NTC Thermistor in Mn-Co-O System (Mn-Co-O계 NTC 써미스터의 물성에 미치는 혼합의 영향)

  • Yoon, Sang-Sik;Kim, Kyung-Sik;Yoon, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.459-462
    • /
    • 2001
  • Interface effects on properties of NTC thermistors having Mn-Co-O spinel crytal structure system are analyzed by a mixing rule in case of mixed types and layered types between CuO and $Al_{2}O_{3}$ added compounds. With adding CuO and $Al_{2}O_{3}$, The compounds form completely solid solution and their resistance and B constant are changed due to the variation of conduction electrons by their ionic substitutions. The properties of mixed NTC thermistors are depended on the logarithmic mixing rule by a dispersed phase and they show slightly lower values due to the lattice mixing affect in compared with calculated values. The resistance of layered NTC thennistors is depended upon the series mixing rule containing the value of an interface layer and effected by the variation of its thickness, and it is changed rapidly to the logarithmic mixing rule by the connection between two layers with increasing the interface layer.

  • PDF

Interface Reaction Between LSMC and YSZ and Impedance Properties (LSMC와 YSZ의 계면반응 및 임피던스 특성)

  • 김재동;김구대;문지웅;김창은;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.899-904
    • /
    • 1998
  • Interface reaction between LSMC and YSZ is discussed with chemical composition of LSMC. The reac-tivity between LSMC and YSZ increased with increasing Co amount and A-site deficient perovskite is very effective on reducing reactivity. The (La0.8Sr0.2)xMn0.8Co0.2O3 (X=0.9-1) composition is not reactive with YSZ in experimental range. The electrode reaction reaction resistance increases due to reaction product.

  • PDF

A COMPARATIVE STUDY OF THE 1-PIECE AND 2-PIECE CONICAL ABUTMENT JOINT: THE STRENGTH AND THE FATIGUE RESISTANCE

  • Kwon, Taek-Ka;Yang, Jae-Ho;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.780-786
    • /
    • 2007
  • Statement of problem. The performance and maintenance of implant-supported prostheses are primarily dependent upon load transmission both at the bone-to-implant interface and within the implant-abutment-prosthesis complex. The design of the interface between components has been shown to have a profound influence on the stability of screw joints. Purpose. The Purpose of this study was to compare the strength and the fatigue resistance of 1-piece and 2-piece abutment connected to oral implant, utilizing an internal conical interface. Material and methods. Twenty $Implatium^{(R)}$ tapered implants were embedded to the top of the fixture in acrylic resin blocks. Ten $Combi^{(R)}$(1-piece) and $Dual^{(R)}$(2-piece) abutments of the same dimension were assembled to the implant, respectively. The assembled units were mounted in a testing machine. A load was applied perpendicular to the long axis of the assemblies and the loading points was at the distance of 7mm from the block surface. Half of 1-piece and 2-piece abutment-implant units were tested for the evaluation of the bending strength, and the others were cyclically loaded for the evaluation of the fatigue resistance until plastic deformation occurred. Nonparametric statistical analysis was performed for the results. Results. Mean plastic and maximum bending moment were $1,900{\pm}18Nmm,\;3,609{\pm}106Nmm$ for the 1-piece abutment, and $1,250{\pm}31Nmm,\;2,688{\pm}166Nmm$ for the 2-piece abutment, respectively. Mean cycles and standard deviation when implant-abutment joint showed a first plastic deformation were $238,610{\pm}44,891$. cycles for the 1-piece abutment and $9,476{\pm}3,541$ cycles for the 2-piece abutment. A 1-piece abutment showed significantly higher value than a 2-piece abutment in the first plastic bending moment (p<.05), maximum bending moment (p<.05) and fatigue strength (p<.05). Conclusion. Both 1-piece and 2-piece conical abutment had high strength and fatigue resistance and this suggests long-term durability without mechanical complication. However, the 1-piece conical abutment was more stable than the 2-piece conical abutment in the strength and the fatigue resistance.

Investigation of Characteristics and Suggestion of Evaluation Formulae for Skin Resistance of SIP (SIP 말뚝의 주면저항력 특성 고찰 및 산정식 제안)

  • Lim, Hae-Sig;Park, Yong-Boo;Park, Jong-Bae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • Because of the environmental problem during the pile driving, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. In Korea, SIP (Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. But, a proper bearing capacity evaluation formula has not been suggested, yet. To improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed under various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the maximum unit skin resistance capacity evaluation formulae on SM, SC soil was suggested.

  • PDF

Thermal Contact Resistance Measurement of Metal Interface at Cryogenic Temperature (극저온에서 금속표면의 열 접촉 저항 측정)

  • Kim, Myung Su;Choi, Yeon Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • The thermal contact resistance (TCR) is one of the important resistance components in cryogenic systems. Cryogenic measurement devices using a cryocooler can be affected by TCR because the device has to consist of several metal components that are in contact with each other for heat transfer to the specimen without a cryogen. Therefore, accurate measurement and understanding of TCR is necessary for the design of cryogenic measurement devices using a cryocooler. The TCR occurs at the interface between metals and it can be affected by variable factors, such as the roughness of the metal surface, the contact area and the contact pressure. In this study, we designed a TCR measurement system at variable temperature using a cryocooler as a heat sink. Copper was selected as a specimen in the experiment because it is widely used as a heat transfer medium in cryogenic measurement devices. We measured the TCR between Cu and Cu for various temperatures and contact pressures. The effect of the interfacial materials on the TCR was also investigated.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Suggestion of Evaluation Formula for Skin Resistance of SIP (SIP말뚝의 주면저항력 예측 모델 제안)

  • Chung, Hyung-Sik;Lim, Hae-Sig;Kim, Jung-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.59-66
    • /
    • 2003
  • The environmental problem due to the pile driving, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP (Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, a proper bearing capacity evaluation formula has not been suggested, yet. In order to improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed under various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the nonlinear unit skin resistance capacity model and relative parameters evaluation formula with SM, SC soil were suggested.

  • PDF