• Title/Summary/Keyword: Interface friction

Search Result 496, Processing Time 0.024 seconds

Evaluation of Interface Shear Properties Through Static Friction Tests (정적마찰 시험을 통한 접촉전단 특성평가)

  • Chang, Yong-Chai;Lee, Seung-Eun;Seo, Ji-Woong;Bowders, John J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.813-818
    • /
    • 2009
  • Shear properties of plastic bottle film/plastic bottle film and plastic bottle film/granitic soil which were evaluated from static friction tests. The monotonic shear experiments were performed by using an tilt table apparatus and large direct shear device. The test results showed that the friction angle of each interface and the interface depended on the amount of normal stress, the type of the interface used. Therefore, the testing method should be determined carefully by considering the type of loads and normal stress expected in the field with using the materials installed in the site.

  • PDF

Friction on the Tool-chip Interface Under Liquid Nitrogen Cooling (공구와 칩 사이에서의 Liquid Nitrogen의 마찰 효과)

  • Jun Seong Chan
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.237-249
    • /
    • 2002
  • A cutting fluid can improve machining quality and tool life by maintaining the tool toughness and by providing a lubrication effect to reduce the friction between the chip and tool interface. Although liquid nitrogen as an environmentally safe coolant has been widely recognized in cryogenic machining, its function as a lubricant is plausible due to its chemical inertness, physical volatility and low viscosity. Since a reduced friction is a direct witness of the lubrication effect from a tribological viewpoint, this paper presents an evaluation of the apparent friction coefficient on the tool-chip interface in cryogenic cutting operations to prove and characterize the lubricity of LN2 in cryogenic machining. The mathematical approaches have been formulated to derive the normal and frictional forces on the tool-chip interface for the oblique cutting tests.

Interface shear between different oil-contaminated sand and construction materials

  • Mohammadi, Amirhossein;Ebadi, Taghi;Boroomand, Mohammad Reza
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.299-312
    • /
    • 2020
  • The aim of this paper was to investigating the effects of soil relative density, construction materials roughness, oil type (gasoil, crude oil, and used motor oil), and oil content on the internal and interface shear behavior of sand with different construction materials by means of a modified large direct shear test apparatus. Tests conducted on the soil-soil (S-S), soil-rough concrete (S-RC), soil-smooth concrete (S-SC), and soil-steel (S-ST) interfaces and results showed that the shear strength of S-S interface is always higher than the soil-material interfaces. Internal and interface friction angles of sand beds increased by increase in relative density and decreased by increasing oil content. The oil properties (especially viscosity) played a major role in interface friction behavior. Despite the friction angles of contaminated sands with viscous fluids drastically decreased, it compensated by the apparent cohesion and adhesion developed between the soil grains and construction materials.

An experimental study on shear mechanical properties of clay-concrete interface with different roughness of contact surface

  • Yang, Wendong;Wang, Ling;Guo, Jingjing;Chen, Xuguang
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • In order to understand the shear mechanical properties of the interface between clay and structure and better serve the practical engineering projects, it is critical to conduct shear tests on the clay-structure interface. In this work, the direct shear test of clay-concrete slab with different joint roughness coefficient (JRC) of the interface and different normal stress is performed in the laboratory. Our experimental results show that (1) shear strength of the interface between clay and structure is greatly affected by the change of normal stress under the same condition of JRC and shear stress of the interface gradually increases with increasing normal stress; (2) there is a critical value JRCcr in the roughness coefficient of the interface; (3) the relationship between shear strength and normal stress can be described by the Mohr Coulomb failure criterion, and the cohesion and friction angle of the interface under different roughness conditions can be calculated accordingly. We find that there also exists a critical value JRCcr for cohesion and the cohesion of the interface increases first and then decreases as JRC increases. Moreover, the friction angle of the interface fluctuates with the change of JRC and it is always smaller than the internal friction angle of clay used in this experiment; (4) the failure type of the interface of the clay-concrete slab is type I sliding failure and does not change with varying JRC when the normal stress is small enough. When the normal stress increases to a certain extent, the failure type of the interface will gradually change from shear failure to type II sliding failure with the increment of JRC.

High temperature Friction and Wear of Friction Material; The Effect of the Relative Amount of Graphite and Zirconium Silicate (ZrSiO$_4$) (흑연과 지르콘의 상대적 함량에 따른 마찰재의 고온 마찰 및 마모특성)

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Tribological behavior of novolac resin-based friction materials with three different relative amounts of graphite and zirconium silicate was investigated by using a pad-on-disk type friction tester. The goal of this paper is to examine the effects of the relative amount of a lubricant and an abrasive in the automotive friction material on friction and wear characteristics at elevated temperature. Friction and wear of friction materials were affected by the existence of transfer film(3$\^$rd/ body layer) at friction interface and the composition of friction material, especially lubricant amount. The friction material with higher content of graphite indicated homogenized and durable transfer film, and resulted in stable friction coefficient regardless of the increase in friction heat. The experimental result also showed that the higher concentration of ZrSiO$_4$ in friction material aggravated friction stability and wear resistance due to the higher friction heat generated at fiction interface during high temperature friction test.

Die Surface Texturing by Femtosecond Laser for Friction Reduction (펨토초레이저를 이용한 알루미늄 성형다이의 미세가공에 관한 연구)

  • Choi, Hae-Woon;Shin, Hyun-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.57-63
    • /
    • 2009
  • Interface friction in blanking dies, cold forging and extrusion of aluminum alloys is a major cause of inefficient process. This paper describes an investigation of femtosecond laser texturing for reduction of interface friction on sliding surfaces in forming process. Femtosecond direct writing technology was used to fabricate a laser micro-machined die and to create microgroove patterns with varying size and density on metal forming dies. A systematic approach to find the optimum parameters and computer simulation comparison of friction coefficients are provided to study the relation of friction coefficients and die profiles. In metal forming tests, the effectiveness of various laser-machined patterns for enhancing interface lubrication is determined.

A Study on the mechanical properties of STS304-Al6351 friction welding zone (스텐리스강(STS304)과 알루미늄합금(Al6351) 마찰용 접부의기계적 특성에 관한 연구)

  • 김의환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.131-136
    • /
    • 2000
  • This study deals with the mechanical properties of STS304-Al351 friction welding zone. Main results are as follows ; under the condition of upset pressure 75MPa, the tensile strength of STS304-al6351 friction weld interface was higher than that of Al6351 base metal, and the highest tensile strength(290MPa) was obtained at upset pressure 125MPa. The hardness profile across the weld interface shows that the hardness of both STS304 and Al6351 is higher around the weld interface, and sharply increased hardness on the STS304 side is related with the plastic deformation of micro volume. As the result of analyzing the tensile fracture, it showed perfect soft fracture.

  • PDF

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF

A Study on the friction weldability of inconel alloy-stainless steel (인코넬 합금과 스테인레스 강의 마찰용접 특성 연구)

  • 김의환;민택기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 2001
  • In this study, the friction weldability and properties of inconel alloy(IN738LC) to stainless steel (STS304) was investigat-ed. Upset length increased according to increment of friction pressure and time. The tensile strength of the friction weld-ing reached 85% of the STS304 base metal strength under the conditions of 8 sec friction time, 50MPa friction pressure and 150 MPa upset pressure. From the result of fracture surface analysis, IN738LC section can be joined with STS 304 materials in shape of a convex lens. Also, the temperature of welded interface was measured with k-type thermocouple. Finally the plastic flow confirmed at the welded interface STS304 by micro test.

  • PDF

An Experimental Study on the Effect of Wear Particles on the Sliding Behavior of Silver-Coated Bearing Steels (은 박막이 코팅된 베어링강의 마찰거동에 미치는 마모입자의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • The effect of silver particles on the sliding behavior of bearing steels was studied experimentally by using a ball-on-disk tribometer. Tests were performed in ambient air, dry air and vacuum. Disks of AISI 52100 were silver-coated by a thermal evaporation method, and the effects of silver particle transfer on friction were analyzed. In order to understand further the mechanism of silver particle transfer and its effect on friction and wear, pre-compressed silver particles were artificially introduced into the friction interface and the results were compared to those of silver-coated specimens. Results showed that the introduced silver particles produced transfer layers and resulted in low friction. It also showed that this low friction is closely related to the characteristic behavior of transfer layers. Shakedown occurred at the friction interface affected the friction and wear.