• Title/Summary/Keyword: Interface ageing

Search Result 12, Processing Time 0.026 seconds

Simulation of Interface Ageing Effect of Suspension Insulator Using ANSYS (ANSYS를 이용한 현수애자의 계면팽창거동에 따른 특성 평가)

  • 우병철;한세원;조한구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.342-347
    • /
    • 2003
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of simulation analysis and experimental results show that cement volume growths affect severely to b mechanical failure ageing.

A Variation of Maximum Stress with Axial Loading in Porcelain Insulators for Transmission Line using ANSYS (ANSYS를 이용한 송전용 자기재 애자의 장력에 따른 특성 변화)

  • Woo, B.C.;Han, S.W.;Cho, H.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.104-107
    • /
    • 2003
  • The ageing cause in many porcelain suspension insulators which occur on transmission and distribution line with dead-end stings is mechanical stress in interface between porcelain and cement materials. It is known that the principal mechanical stress which give electrical failure is the results of the displacement is due to cement growth. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of cement for suspension insulator. These simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing. These simulation analysis and experimental results show that axial loading affects of Porcelain insulators severely to be mechanical failure ageing.

  • PDF

A Simulation on the Displacement Stress of Cement in Porcelain Insulators for Transmission Line (송전용 자기재 애자의 시멘트 변위 응력에 관한 시뮬레이션)

  • Han, S.W.;Cho, H.G.;Woo, B.C.;Jung, G.C.;Lee, D.I.;Choi, I.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.476-479
    • /
    • 2002
  • The ageing cause in many porcelain suspension insulators which occur on transmission and distribution line with dead-end stings is mechanical stress in interface between porcelain and cement materials. It is known that the principal mechanical stress which give electrical failure is the results of the displacement is due to cement growth. We studied the effect of cement displacement resulting environmental ageing parameters on porcelain insulator mechanical properties for transmission line by simulation (ANSYS/NASTRAN program) and test methods. These simulation analysis and experimental results show that cement volume growth affects severely to be mechanical failure ageing.

  • PDF

Simulation of interface ageing effect of suspension insulator using ANSYS (ANSYS를 이용한 현수애자의 계면팽창거동에 대한 해석)

  • Woo, B.C.;Han, S.W.;Cho, H.G.;Choi, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.74-76
    • /
    • 2002
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of cement for suspension insulator. These simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing.

  • PDF

Stress Response of Cement Interface on Manufacturing Process of a Suspension Insulator (송전선용 현수애자 양생공정에서 발생하는 접착부의 응력변화)

  • Woo, Byung-Chul;Han, See-Won;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1448-1450
    • /
    • 2003
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing.

  • PDF

Controller Design for Stable Engine Idle Mode (안정한 엔진 공회전 모드를 위한 제어기 설계)

  • 이영춘;방두열;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF

Aging Characteristics of Polymer Lighting Arrester by Multi-Stress Accelerated Aging Test (복합가속열화시험에 의한 폴리머 피뢰기의 경년특성)

  • Song, Hyun-Seok;Lee, Jae-Bong;Jang, Sang-Ok;Han, Yong-Huei;Oh, Jae-Hyoung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.86-89
    • /
    • 2004
  • Recently polymer arresters are being used widely but we don't have appropriate long term characteristics test methods. Therefore we need to develop special test facility to evaluate long term reliability of polymer arresters. It's polymeric housing can be degraded by environmental stress and the interface between housing and inner module can be affected by moisture absorption. This moisture absorption can cause leakage current and tracking in the interface. We developed multi stress accelerated ageing test facility to simulate field conditions including UV, temperature, humidity, voltage, salt fog and rain. In addition, we carried out field exposure test at the outdoor test yard and characteristics analysis of field operated specimens to evaluate accelerating factor of this accelerated aging test.

  • PDF

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang;Junhong Guo
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.557-570
    • /
    • 2024
  • Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

Ageing Characteristics of Porcelain Interface by Forest Fire Thermal Shock (산불 열충격에 의한 자기애자의 계면열화 특성)

  • Han, Se-Won;Choi, In-Hyuk;Lee, Dong-Iil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.454-455
    • /
    • 2007
  • 송전용 자기 애자에 대하여 산물화염 특성과 송전선로의 환경 검토를 토대로 송전용 절연물에 대한 산불화염 열화특성을 1)내열충격 열화와 2) 열충격 싸이클 열화로 나누어 가속시킨 후 절연물의 성능을 시험 평가하였다. 또한 승전용 자기애자 (254mm, 36,000lbs)를 대상으로 실제 삼불열화 조건을 근간으로 기계적, 열적 환경을 고려한 자기애자의의 수축, 팽창 변위에 따른 계면의 응력거동을 열충격 및 내열충격 시험의 결과와 비교 분석하였다.

  • PDF

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.