• Title/Summary/Keyword: Interface Stress

Search Result 1,313, Processing Time 0.03 seconds

INFLUENCE OF IMPLANT-ABUTMENT INTERFACE DESIGN, IMPLANT DIAMETER AND PROSTHETIC TABLE WIDTH ON STRENGTH OF IMPLANT-ABUTMENT INTERFACE : THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (임플랜트의 지대주 연결방식, 임플랜트의 직경 및 지대주 연결부위의 직경 차이에 따른 응력분포에 관한 삼차원 유한요소분석)

  • Oh Se-Woong;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.393-404
    • /
    • 2003
  • Statement of problem. Higher incidence of prosthetic complications such as screw loosening, screw fracture has been reported for posterior single tooth implant. So, there is ongoing research regarding stability of implant-abutment interface. One of those research is increasing the implant diameter and prosthetic table width to improve joint stability. In another part of this research, internal conical type implant-abutment interface was developed and reported joint strength is higher than traditional external hex interface. Purpose. The purpose of this study is to compare stress distribution in single molar implant between external hex butt joint implant and internal conical joint implant when increasing the implant diameter and prosthetic table width : 4mm diameter, 5mm diameter, 5mm diameter/6mm prosthetic table width. Material and method. Non-linear finite element models were created and the 3-dimensional finite element analysis was performed to see the distribution of stress when 300N static loading was applied to model at $0^{\circ},\;15^{\circ},\;30^{\circ}$ off-axis angle. Results. The following results were obtained : 1. Internal conical joint showed lower tensile stress value than that of external hex butt joint. 2. When off-axis loading was applied, internal conical joint showed more effective stress distribution than external hex butt joint. 3. External hex butt joint showed lower tensile stress value when the implant diameter was increased. 4. Internal conical joint showed lower tensile stress value than external hex butt joint when the implant diameter was increased. 5. Both of these joint mechanism showed lower tensile stress value when the prosthetic table width was increased. Conclusion. Internal conical joint showed more effective stress distribution than external hex joint. Increasing implant diameter showed more effective stress distribution than increasing prosthetic table width.

The Simulation of Notch Length on the Stress Distribution in Lap Zone of Single Lap Joint with a Centered Notch

  • Yan, Zhanmou;You, Min;Yi, Xiaosu;Zheng, Xiaoling
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.18-23
    • /
    • 2006
  • The influence of the notch length on the stress distribution of mid-bondline and adherend was investigated using elasto-plastic finite element method. The results from the simulation showed that peak stress of mid-bondline decreased markedly as adherend with notch in the middle of lap zone, and the stress in the middle of joint with low stress originally increased evidently. All the peak stresses decreased firstly and increased again as the length of notch increased. The relative higher peak stress appeared at the point near the notch of adherend where might be failed previously during the loading procedure.

  • PDF

A Study on a Stress Measurement Algorithm Based on ECG Analysis of NUI-applied Tangible Game Users (NUI가 적용된 체감형 게임의 사용자 심전도 분석에 의한 스트레스 측정 알고리즘 연구)

  • Lee, Hyun-Ju;Shin, Dong-Il;Shin, Dong-Kyoo
    • Journal of Korea Game Society
    • /
    • v.13 no.5
    • /
    • pp.73-80
    • /
    • 2013
  • NUI(Natural User Interface) allows users to directly interact with surrounding digital devices using their voices or body motions without additional input/output interface devices. Our study has been carried out on human users who play a tangible game with body motions in the NUI-applied smart space. ECG was measured for 60 seconds duration before and after playing the game to determine user stress levels, and the measured signals were analyzed through an improved Random Forest algorithm. In order to experiment by a supervised learning, users additionally input whether or not the user felt stress. Moreover, the improved algorithm showed 1.04% higher accuracy than existing algorithm.

Analysis of Propagating Crack Along Interface of Isotropic-Orthotropic Bimaterial by Photoelastic Experiment

  • Lee, K.H.;Shukla, A.;Parameswaran, V.;Chalivendra, V.;Hawong, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.102-107
    • /
    • 2001
  • Interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic Photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static crack is greater when $\alpha=90^{\circ}C$ (fibers perpendicular to the interface) than when $\alpha=0^{\circ}C$ (fiber parallel to the interface) and those when $\alpha=90^{\circ}C$ are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating crack are greater when $\alpha=0^{\circ}C$ than $\alpha=90^{\circ}C$. The relationship between complex dynamic stress intensity factor $|K_D|$ and crack speed C is similar to that for isotropic homogeneous materials, the rate of increase of energy release rate G or $|K_D|$ with crack speed is not as drastic as that reported for homogeneous materials.

  • PDF

Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials (등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발)

  • Hwang, Jae-Seok;Sin, Dong-Cheol;Kim, Tae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.

Anaysis of the Interfacial Stress Intensity Factors and Fatigue Crack Growth Behaviour for the Edge Interface Crack in the Dissimilar Materials (이종재료 접합재의 편측접합계면균열의 응력확대계수 해석 및 피로균열성장 해석)

  • 이갑래;최용식
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.2
    • /
    • pp.5-13
    • /
    • 1991
  • In this paper, the interfacial stress intensity factors( $K_{i}$$K_1$+i $K_2$) for the edge interface crack in the dissimilar materials(isotropic-isotropic materials, isotropic-composite materials) were analysed by BEM(Boundary Element Method). The fatigue crack growth behaviour was investigated by load constant fatigue test. From the experimental results, the relationship between da/dN and interfacial stress intensity facto, ( $K_{i}$ or $K_1$) can be expressed by Paris'law for homogeneous materials.s.s.

  • PDF

A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites (불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

Effect of Alternate Bias Stress on p-channel poly-Si TFT`s (P-채널 다결정 실리콘 박막 트랜지스터의 Alternate Bias 스트레스 효과)

  • 김영호;조봉희;강동헌;길상근;임석범;임동준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.869-873
    • /
    • 2001
  • The effects of alternate bias stress on p-channel poly-Si TFT\`s has been systematically investigated. We alternately applied positive and negative bias stress on p-channel poly-Si TFT\`s, device Performance(V$\_$th/, g$\_$m/, leakage current, S-slope) are alternately appeared to be increasing and decreasing. It has been shown that device performance degrade under the negative bias stress while improve under the positive bias stress. This effects have been related to the hot carrier injection into the gate oxide rather than the generation of defect states within the poly-Si/SiO$_2$ interface under alternate bias stress.

  • PDF

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.

Temperature dependence of Heteroeptaxial $Y_2O_3$ films grown on Si by ionized cluster beam deposition

  • Cho, M.-H.;Ko, D.-H.;Whangbo, S.W.;Kim, H.B.;Jeong, K.H.;Whang, C.N.;Choi, S.C.;Cho, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.57-77
    • /
    • 1998
  • Heteroepitaxial $Y_2O_3$ films were grown on a Si(111) substrate by ionized cluster beam deposition(ICBD) in ultra high vacuum, and its qualities such as crystllitnity, film stress, and morphological characteristics were investigated using the various measurement methods. The crystallinity was investigated by x-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED). Interface crystallinity was also examined by Rutherford backscattering spectroscopy(RBS) channeling, transmission electron microscopy(TEM). The stress of the films was measured by RBS channeling and XRD. Surface and interface morphological characteristics were investigated by atomic force microscopy (AFM) and x-ray scattering method. Comparing the interface with the surface characteristics, we can conclude that many defects at the interface region were generated by interface reaction between the yttrium metal and SiO2 layer and by ion beam characteristic such as shallow implantation, so that they influenced the film qualities. The film quality was dominantly depended on the characteristic temperature range. In the temperature range from $500^{\circ}C$ to $600^{\circ}C$, the crystallinity was mainly improved and the surface roughness was drastically decreased. On the other hand, in the temperature range from $600^{\circ}C$ to $700^{\circ}C$, the compressive stress and film density were dominantly increased, and the island size was more decreased. Also the surface morphological shape was transformed from elliptical shape to triangular. The film stress existed dominantly at the interface region due to the defects generation.

  • PDF