• Title/Summary/Keyword: Interface Release Rate

Search Result 64, Processing Time 0.018 seconds

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K;Mishra, Pradeep K;Panda, Subrata K
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.723-735
    • /
    • 2020
  • This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

A Study on Constructing Bottom-up Model for Electric Sector (전력부문 온실가스 감축정책 평가를 위한 상향식 모형화 방안)

  • Kim, Hugon;Paik, Chunhyun;Chung, Yongjoo;Ahn, Younghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.114-129
    • /
    • 2016
  • Since the release of mid-term domestic GHG goals until 2020, in 2009, some various GHG reduction policies have been proposed to reduce the emission rate about 30% compared to BAU scenario. There are two types of modeling approaches for identifying options required to meet greenhouse gas (GHG) abatement targets and assessing their economic impacts: top-down and bottom-up models. Examples of the bottom-up optimization models include MARKAL, MESSAGE, LEAP, and AIM, all of which are developed based on linear programming (LP) with a few differences in user interface and database utilization. The bottom-up model for electric sector requires demand management, regeneration energy mix, fuel conversation, etc., thus it has a very complex aspect to estimate some various policies. In this paper, we suggest a bottom-up BAU model for electric sector and how we can build it through step-by-step procedures such that includes load region, hydro-dam and pumping storage.

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF

A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends (DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this work, the effect of PMR-15 content on the variation of surface free energy of the DGEBA/PMR-15 blend system was investigated in terms of contact angles and mechanical interfacial tests. Based on FT-IR result of the blend system. C=O (1,772, $1,778cm^{-1}$) and C-N ($1,372cm^{-1}$) peaks appeared with imidization of PMR-15 and -OH ($3,500cm^{-1}$) peak showed broadly at 10 phr of PMR-15 by ring-opening of epoxy. Contact angle measurements were performed by using deionized water and diiodomethane as testing liquids. As a result, the surface free energy of the blends gave a maximum value at 10 phr of PMR-15, due to the significant increasing of specific component. The mechanical interfacial properties measured from the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$) showed a similar behavior with the results of surface energetics. This behavior was probably attributed to The improving of the interfacial adhesion between intermolecules, resulting from increasing the hydrogen bondings of the blends.

  • PDF