• 제목/요약/키워드: Interface Crack

검색결과 518건 처리시간 0.025초

접합된 탄성층 내에 존재하는 균열의 응력강도계수 (Stress Intensity Factors of a Crack Embedded in Bonded Elastic Layers)

  • 박재학
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1538-1550
    • /
    • 1991
  • 본 연구에서는 접합된 두 층이 유한한 두께를 가지고, 또한 균열은 임의의 각 도로 기울어져 있는 경우의 문제를 해석하여 층의 두께 등이 응력강도계수에 미치는 영향을 살펴보았다.

평판형 고체산화물 연료전지 표면균열거동에 관한 수치해석 (The Numerical Analysis for the Surface Crack Behavior in the Planar Solid Oxide Fuel Cell)

  • 박철준;권오헌;강지웅
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.1-8
    • /
    • 2018
  • A fuel cell is an energy conversion device that converts a chemical energy directly into an electrical energy and has higher energy efficiency than an internal combustion engine, but solid oxide fuel cell (SOFC) consisting of brittle ceramic material remains as a major issue regarding the mechanical properties as the crack formation and propagation. In this study, the stress distribution and crack behavior around the crack tip were evaluated, due to investigated the effects of the surface crack at the operating condition of high temperature. As a result, the difference of the generated stress was insignificant at operating conditions of high temperature according to the surface crack length changes. This is because, the high stiffness interconnect has a closed structure to suppress cell deformation about thermal expansion. The stress intensity factor ratio $K_{II}/K_I$ increased as the crack depth increased, at that time the effect of $K_{II}$ is larger than that of $K_I$. Also the maximum stress intensity factor increased as the crack depth increased, but the location of crack was generated at the electrolyte/anode interface, not at the crack tip.

직접인장시험에 의한 원형 비부착면이 삽입된 신.구 콘크리트의 부착강도 및 파괴에너지 산정 (Determination of Bond Strength and Fracture Energy of a Bi-material Cylinder with Peny-shaped Interface Crack by Pull-off Test)

  • 양성철;김진철;박종원
    • 한국도로학회논문집
    • /
    • 제6권1호
    • /
    • pp.47-56
    • /
    • 2004
  • 신 구 콘크리트의 부착강도 시험시 두 재료의 계면에서 파괴가 유도되어 순수한 부착강도를 측정할 수 있도록 계면에 원형의 비부착면을 삽입하여 직접인발시험에 의해 부착강도를 측정하는 실험방법을 제시하였다. 먼저, 새로 제안한 실험방법에 의해 계면에서 응력이 집중되는 정도를 파악하기 위해 유한요소해석을 수행하여 두 재료의 탄성계수비 및 비부착면의 면적 (균열률)에 따른 계면에서의 파괴에너지를 산정하였으며, 부재의 크기 및 하중에 대한 보정을 감안하여 무차원함수로 환산하였다. 그리고 본 연구에서 제시된 부착강도 시험방법의 신뢰성을 입증하기 위해, 3가지 크기의 원형 비부착면(균열률 0.2, 0.4. 0.6)이 삽입된 신 구 콘크리트 복합시편(유황 폴리머 콘크리트+보통 콘크리트)을 사용하여 부착강도를 측정하였고 앞서 전개된 무차원함수로부터 계면 파괴에너지를 역산하였다. 시험결과, 모든 시편이 계면에서 파괴가 유도되었다. 또한 실험 데이터 및 해석결과를 분석하여 균열률이 0.4$\sim$0.6인 경우에 부착강도의 오차가 가장 적게 발생될 수 있음을 파악하였다.

  • PDF

AlN/W계 복합재료의 기계적 특성과 미세구조 (Mechanical Properties and Microstructure of AlN/W Composites)

  • 윤영훈;최성철;박철원
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF

표면적분법을 이용한 양압력이 작용하는 중력식 콘코리트 댐의 균열해석 (Crack Analysis of Concrete Gravity Dam subjected to Uplift Pressure using Surface Integral Method)

  • 진치섭;이영호;엄장섭;김태완
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.267-272
    • /
    • 2000
  • The modeling on uplift pressure on the foundation of a dam on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams. The evaluation of stress intensity factor at the crack tip of concrete gravity dam due to uplift pressure effect by surface integral method is performed in this study. The effects of body force, overtopping pressure and water pressure on the crack-face are also considered in this study.

  • PDF

Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

  • Kim, No-Hyu;Yang, Seung-Yong
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.582-590
    • /
    • 2007
  • Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness.

Decomposition of Interfacial Crack Driving Forces in Dissimilar Joints

  • Kim, Yun-Jae;Lee, Hyung-Yil
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.30-38
    • /
    • 2000
  • This paper presents a framework how to estimate crack driving forces in terms of crack-tip opening displacement and J-integral for mismatched dissimilar joints with interface cracks. The mismatch in elastic, thermal, and plastic hardening properties is not considered, but the mismatch in plastic yield strengths is emphasized here. The main outcome of the present work is that the existing methods to estimate crack driving forces for homogeneous materials can be used with slight modification. Such modification includes (i) mismatch- corrected limit load solutions, and (ii) evaluating the contribution of each material in dissimilar joints to the total crack driving force, which depends on the strength mismatch of the dissimilar joints.

  • PDF

유한요소법에 의한 피로균열 진전 시뮬레이션 (Simulation of Fatigue Crack Propagation by Finite Element Analysis)

  • 구병춘;양승용;박준서
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.337-340
    • /
    • 2005
  • The effect of residual stress on fatigue crack growth was investigated in terms of finite element analysis. Simulations were performed on a CT specimen in plane strain. An interface-cohesive element that accounts for damage accumulation due to fatigue along the notch direction has been used. Numerical results show that fatigue crack growth rate slows down when compressive residual stress field exists in front of the crack tip.

  • PDF

A direct XFEM formulation for modeling of cohesive crack growth in concrete

  • Asferg, J.L.;Poulsen, P.N.;Nielsen, L.O.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.83-100
    • /
    • 2007
  • Applying a direct formulation for the enrichment of the displacement field an extended finite element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST). Modeling of standard concrete test cases such as fracture in the notched three point beam bending test (TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show good agreement with results obtained by applying standard interface elements in FEM and with experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of the crack growth direction is discussed.

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • 비파괴검사학회지
    • /
    • 제32권4호
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.