• Title/Summary/Keyword: Interest region

Search Result 1,509, Processing Time 0.025 seconds

An Iterative Image Reconstruction Method for the Region-of-Interest CT Assisted from Exterior Projection Data (Exterior 투영데이터를 이용한 Region-of-Interest CT의 반복적 영상재구성 방법)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.132-141
    • /
    • 2014
  • In an ordinary CT scan, a large number of projections with full field-of-view (FFOV) are necessary to reconstruct high resolution images. However, excessive x-ray dosage is a great concern in FFOV scan. Region-of-interest (ROI) CT or sparse-view CT is considered to be a solution to reduce x-ray dosage in CT scanning, but it suffers from bright-band artifacts or streak artifacts giving contrast anomaly in the reconstructed image. In this study, we propose an image reconstruction method to eliminate the bright-band artifacts and the streak artifacts simultaneously. In addition to the ROI scan for the interior projection data with relatively high sampling rate in the view direction, we get sparse-view exterior projection data with much lower sampling rate. Then, we reconstruct images by solving a constrained total variation (TV) minimization problem for the interior projection data, which is assisted by the exterior projection data in the compressed sensing (CS) framework. For the interior image reconstruction assisted by the exterior projection data, we implemented the proposed method which enforces dual data fidelity terms and a TV term. The proposed method has effectively suppressed the bright-band artifacts around the ROI boundary and the streak artifacts in the ROI image. We expect the proposed method can be used for low-dose CT scans based on limited x-ray exposure to a small ROI in the human body.

Evaluation of Validity Glomerular Filtration Rate Measured by Gates Method according Region of Interest (관심 영역 설정에 따른 Gates법 토리여과율의 유효성 평가)

  • Su-Young Park;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.5
    • /
    • pp.417-425
    • /
    • 2023
  • The glomerular filtration rate (GFR) has been the subject of much research as a key indicator for diagnosing, treating, and monitoring kidney function. The gamma camera method (Gates method) is simple and allows simultaneous acquisition of GFR and renal scintigraphy for each kidney, however its accuracy is inferior. This study aimed to investigate changes in GFR depending on how region of interest (ROI) are set up, which is one of many factors influencing accuracy. GFR was calculated by setting the ROI for each phase of the image acquisition time (Gates-1: 0~1 minutes, Gates-2: 1~3 minutes, Gates-3: 3~27 minutes), and statistical significance was verified based on probability value 0.05 through ANOVA analysis. While there was no statistically significant difference among results from Gates-1, 2, 3 (p=0.481>0.05), overall results from the Gates method tended to overestimate compared to those from the multiple blood sampling-dual exponential (MBSDE) method. When comparing averages between phases, results from Gates-2 were most similar to those from the MBSDE method. Moreover, paired t-test p-values between MBSDE method and phases were as follows Gates-1: 0.021 (p<0.05), Gates-2: 0.280 (p>0.05), and Gates-3: 0.164 (p>0.05) indicating that only Gates-1 had statistically significant differences compared with MBSDE method. Thus, setting ROI around 2~3 minutes is calculated can aid in accurately determining GFR when Gates Method.

Design of a Plasmonic Switch Using Ultrathin Chalcogenide Phase-change Material

  • Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.239-246
    • /
    • 2017
  • A compact plasmonic switching scheme, based on the phase change of a thin-film chalcogenide material ($Ge_2Sb_2Te_5$), is proposed and numerically investigated at optical-communication wavelengths. Surface plasmon polariton modal analysis is conducted for various thicknesses of dielectric and phase-change material layers, and the optimized condition is induced by finding the region of interest that shows a high extinction ratio of surface plasmon polariton modes before and after the phase transition. Full electromagnetic simulations show that multiple reflections inside the active region may conditionally increase the overall efficiency of the on/off ratio at a specific length of the active region. However, it is shown that the optimized geometrical condition, which shows generally large on/off ratio for any length of active region, can be distinguished by observing the multiple-reflection characteristic inside the active region. The proposed scheme shows an on/off switching ratio greater than 30 dB for a length of a few micrometers, which can be potentially applied to integrated active plasmonic systems.

Individual Identification Using Ear Region Based on SIFT (SIFT 기반의 귀 영역을 이용한 개인 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In recent years, ear has emerged as a new biometric trait, because it has advantage of higher user acceptance than fingerprint and can be captured at remote distance in an indoor or outdoor environment. This paper proposes an individual identification method using ear region based on SIFT(shift invariant feature transform). Unlike most of the previous studies using rectangle shape for extracting a region of interest(ROI), this study sets an ROI as a flexible expanded region including ear. It also presents an effective extraction and matching method for SIFT keypoints. Experiments for evaluating the performance of the proposed method were performed on IITD public database. It showed correct identification rate of 98.89%, and it showed 98.44% with a deformed dataset of 20% occlusion. These results show that the proposed method is effective in ear recognition and robust to occlusion.

3D Pointing for Effective Hand Mouse in Depth Image (깊이영상에서 효율적인 핸드 마우스를 위한 3D 포인팅)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.35-44
    • /
    • 2014
  • This paper proposes a 3D pointing interface that is designed for the efficient application of a hand mouse. The proposed method uses depth images to secure high-quality results even in response to changes in lighting and environmental conditions and uses the normal vector of the palm of the hand to perform 3D pointing. First, the hand region is detected and tracked using the existing conventional method; based on the information thus obtained, the region of the palm is predicted and the region of interest is obtained. Once the region of interest has been identified, this region is approximated by the plane equation and the normal vector is extracted. Next, to ensure stable control, interpolation is performed using the extracted normal vector and the intersection point is detected. For stability and efficiency, the dynamic weight using the sigmoid function is applied to the above detected intersection point, and finally, this is converted into the 2D coordinate system. This paper explains the methods of detecting the region of interest and the direction vector and proposes a method of interpolating and applying the dynamic weight in order to stabilize control. Lastly, qualitative and quantitative analyses are performed on the proposed 3D pointing method to verify its ability to deliver stable control.

Novel License Plate Detection Method Based on Heuristic Energy

  • Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1114-1125
    • /
    • 2013
  • License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.

Real-Time Landmark Detection using Fast Fourier Transform in Surveillance (서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출)

  • Kang, Sung-Kwan;Park, Yang-Jae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.123-128
    • /
    • 2012
  • In this paper, we propose a landmark-detection system of object for more accurate object recognition. The landmark-detection system of object becomes divided into a learning stage and a detection stage. A learning stage is created an interest-region model to set up a search region of each landmark as pre-information necessary for a detection stage and is created a detector by each landmark to detect a landmark in a search region. A detection stage sets up a search region of each landmark in an input image with an interest-region model created in the learning stage. The proposed system uses Fast Fourier Transform to detect landmark, because the landmark-detection is fast. In addition, the system fails to track objects less likely. After we developed the proposed method was applied to environment video. As a result, the system that you want to track objects moving at an irregular rate, even if it was found that stable tracking. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images (사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용)

  • Kim, Jungmoon;Choi, Jee Woong;Kwon, Hyuckjong;Oh, Raegeun;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

Secured Telemedicine Using Whole Image as Watermark with Tamper Localization and Recovery Capabilities

  • Badshah, Gran;Liew, Siau-Chuin;Zain, Jasni Mohamad;Ali, Mushtaq
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.601-615
    • /
    • 2015
  • Region of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI.

Lecture Video Display Technique using Extraction Region of Study based on PDA (PDA 기반의 학습 영역 추출을 이용한 강의 영상 디스플레이 기법)

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2127-2134
    • /
    • 2007
  • The electronic learning helped a learner to overcome the time restriction by providing mobility, instantly and flexibility but the restriction in connection with space on cable computer remained unsolved. Accordingly, the electronic learning has tendency to change into mobile learning environment which allows a learner to overcome time and spatial restriction. However, these mobile devices have a limitation to awareness of learning contents provided over the realtime video movie due to its small display size. Therefore, this paper suggests a technique according to the following priority: for a real time learning image, extract region of study for region of interest, rescale the real time image to its proper size suitable for the display device, and then make it displayed on a wireless PDA. As a result of the experiment, we reduced the calculating time by sampling the field centering on learning contents adaptively and computing the field best suited for device size of the user effectively.