• Title/Summary/Keyword: Interest Point Extraction

Search Result 44, Processing Time 0.027 seconds

Virtual core point detection and ROI extraction for finger vein recognition (지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The finger vein recognition technology is a method to acquire a finger vein image by illuminating infrared light to the finger and to authenticate a person through processes such as feature extraction and matching. In order to recognize a finger vein, a 2D mask-based two-dimensional convolution method can be used to detect a finger edge but it takes too much computation time when it is applied to a low cost micro-processor or micro-controller. To solve this problem and improve the recognition rate, this study proposed an extraction method for the region of interest based on virtual core points and moving average filtering based on the threshold and absolute value of difference between pixels without using 2D convolution and 2D masks. To evaluate the performance of the proposed method, 600 finger vein images were used to compare the edge extraction speed and accuracy of ROI extraction between the proposed method and existing methods. The comparison result showed that a processing speed of the proposed method was at least twice faster than those of the existing methods and the accuracy of ROI extraction was 6% higher than those of the existing methods. From the results, the proposed method is expected to have high processing speed and high recognition rate when it is applied to inexpensive microprocessors.

Lane Departure Warning Algorithm Through Single Lane Extraction and Center Point Analysis (단일차선추출 및 중심점 분석을 통한 차선이탈검출 알고리즘)

  • Bae, Jung-Ho;Kim, Soo-Woong;Lee, Hae-Yeoun;Lee, Hyun-Ah;Kim, Byeong-Man
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.35-46
    • /
    • 2009
  • Lane extraction and lane departure warning algorithms using the image sensor attached in the vehicle are addressed. With the research about intelligent automobile, there have been many algorithms about lane recognition and lane departure warning system. However, since these algorithms require to detect 2 lanes, the high time complexity and the low recognition rate under various driving circumstances are critical problems. In this paper, we present a lane departure warning algorithm using single lane extraction and center point analysis that achieves the fast processing time and high detection rate. From the geometry between camera and objects, the region of interest (ROI) is determined and splitted into two parts. Hough transform detects the part of the lane. After the detected lane is restored to have a pre-determined size, lane departure is estimated by calculating the distance from the center point. On real driving environments, the presented algorithm is compared with previous algorithms. Experiment results support that the presented algorithm is fast and accurate.

Extraction of bridge information based on the double-pass double-vehicle technique

  • Zhan, Y.;Au, F.T.K.;Yang, D.
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.679-691
    • /
    • 2020
  • To identify the bridge information from the response of test vehicles passing on it (also known as the indirect approach) has aroused the interest of many researchers thanks to its economy, easy implementation and less disruption to traffic. The surface roughness of bridge remains an obstacle for such method as it contaminates the vehicle response severely and thereby renders many vehicle-response-based bridge identification methods ineffective. This study aims to eliminate such effect with the responses of two different test vehicles. The proposed method can estimate the surface profile of a bridge based on the acceleration data of the vehicles running on the bridge successively, and obtain the normalized contact point response, which proves to be relatively immune to surface roughness. The frequencies and mode shapes of bridge can be further extracted from the normalized contact point acceleration with spectral analysis and Hilbert transform. The effectiveness of the proposed method is verified numerically with a three-span continuous bridge. The influence of measurement noise is also examined.

Extraction of Passive Device Model Parameters Using Genetic Algorithms

  • Yun, Il-Gu;Carastro, Lawrence A.;Poddar, Ravi;Brooke, Martin A.;May, Gary S.;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • The extraction of model parameters for embedded passive components is crucial for designing and characterizing the performance of multichip module (MCM) substrates. In this paper, a method for optimizing the extraction of these parameters using genetic algorithms is presented. The results of this method are compared with optimization using the Levenberg-Marquardt (LM) algorithm used in the HSPICE circuit modeling tool. A set of integrated resistor structures are fabricated, and their scattering parameters are measured for a range of frequencies from 45 MHz to 5 GHz. Optimal equivalent circuit models for these structures are derived from the s-parameter measurements using each algorithm. Predicted s-parameters for the optimized equivalent circuit are then obtained from HSPICE. The difference between the measured and predicted s-parameters in the frequency range of interest is used as a measure of the accuracy of the two optimization algorithms. It is determined that the LM method is extremely dependent upon the initial starting point of the parameter search and is thus prone to become trapped in local minima. This drawback is alleviated and the accuracy of the parameter values obtained is improved using genetic algorithms.

  • PDF

Automation of Aerial Triangulation by Auto Dectection of Pass Points (접합점 자동선정에 의한 항공삼각측량의 자동화)

  • Yeu, Bock-Mo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.47-56
    • /
    • 1999
  • In this study, tie point observation in aerial triangulation was automated by the image processing methods. The technique includes boundary extraction and We matching processes. The procedures were applied to extract points of Interest and to find their conjugate points in the other images. The image coordinates of the identified points were then used to compute their absolute coordinates. An algorithm was developed in this study for the automation of observation in aerial triangulation, which is a manual process of selecting a tie point and recording the image coordinate of the selected point. The developed algorithm automates this process through the application of a mathematical operator to extract points of interest from an arbitrary image. The root m square error of image coordinates of the developed algorithm is $6.8{\mu}m$, which is close to that of the present analytical method. In a manual environment, the accuracy of the result of a photogrammetric process is heavily dependant on the level of skill and experience of the human operator. No such problem exists in an automated system. Also, as a result of the automated system, the time spent in the observation process could be reduced by a factor of 61.2%, thereby reducing the overall cost.

  • PDF

Robust Hand Region Extraction Using a Joint-based Model (관절 기반의 모델을 활용한 강인한 손 영역 추출)

  • Jang, Seok-Woo;Kim, Sul-Ho;Kim, Gye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • Efforts to utilize human gestures to effectively implement a more natural and interactive interface between humans and computers have been ongoing in recent years. In this paper, we propose a new algorithm that accepts consecutive three-dimensional (3D) depth images, defines a hand model, and robustly extracts the human hand region based on six palm joints and 15 finger joints. Then, the 3D depth images are adaptively binarized to exclude non-interest areas, such as the background, and accurately extracts only the hand of the person, which is the area of interest. Experimental results show that the presented algorithm detects only the human hand region 2.4% more accurately than the existing method. The hand region extraction algorithm proposed in this paper is expected to be useful in various practical applications related to computer vision and image processing, such as gesture recognition, virtual reality implementation, 3D motion games, and sign recognition.

An Analysis on Key Factors of Mobile Fitness Application by Using Text Mining Techniques : User Experience Perspective (텍스트마이닝 기법을 이용한 모바일 피트니스 애플리케이션 주요 요인 분석 : 사용자 경험 관점)

  • Lee, So-Hyun;Kim, Jinsol;Yoon, Sang-Hyeak;Kim, Hee-Woong
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.117-137
    • /
    • 2020
  • The development of information technology leads to changes in various industries. In particular, the health care industry is more influenced so that it is focused on. With the widening of the health care market, the market of smart device based personal health care also draws attention. Since a variety of fitness applications for smartphone based exercise were introduced, more interest has been in the health care industry. But although an amount of use of mobile fitness applications increase, it fails to lead to a sustained use. It is necessary to find and understand what matters for mobile fitness application users. Therefore, this study analyze the reviews of mobile fitness application users, to draw key factors, and thereby to propose detailed strategies for promoting mobile fitness applications. We utilize text mining techniques - LDA topic modeling, term frequency analysis, and keyword extraction - to draw and analyze the issues related to mobile fitness applications. In particular, the key factors drawn by text mining techniques are explained through the concept of user experience. This study is academically meaningful in the point that the key factors of mobile fitness applications are drawn by the user experience based text mining techniques, and practically this study proposes detailed strategies for promoting mobile fitness applications in the health care area.

Development of a Software Program for the Automatic Calculation of the Pulp/Tooth Volume Ratio on the Cone-Beam Computed Tomography

  • Lee, Hoon-Ki;Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.41 no.3
    • /
    • pp.85-90
    • /
    • 2016
  • Purpose: The aim of this study was to develop an automated software to extract tooth and pulpal area from sectional cone-beam computed tomography (CBCT) images, which can guarantee more reproducible, objective and time-saving way to measure pulp/tooth volume ratio. Methods: The software program was developed using MATLAB (MathWorks). To determine the optimal threshold for the region of interest (ROI) extraction, user interface to adjust the threshold for extraction algorithm was added. Default threshold was determined after several trials to make the outline of extracted ROI fitting to the tooth and pulpal outlines. To test the effect of starting point location selected initially in the pulpal area on the final result, pulp/tooth volume ratio was calculated 5 times with different 5 starting points. Results: Navigation interface is composed of image loading, zoom-in, zoom-out, and move tool. ROI extraction process can be shown by check in the option box. Default threshold is adjusted for the extracted tooth area to cover whole tooth including dentin, cementum, and enamel. Of course, the result can be corrected, if necessary, by the examiner as well as by changing the threshold of density of hard tissue. Extracted tooth and pulp area are reconstructed three-dimensional (3D) and pulp/tooth volume ratio is calculated by voxel counting on reconstructed model. The difference between the pulp/tooth volume ratio results from the 5 different extraction starting points was not significant. Conclusions: In further studies based on a large-scale sample, the most proper threshold to present the most significant relationship between age and pulp/tooth volume ratio and the tooth correlated with age the most will be explored. If the software can be improved to use whole CBCT data set rather than just sectional images and to detect pulp canal in the original 3D images generated by CBCT software itself, it will be more promising in practical uses.

Improving Matching Performance of SURF Using Color and Relative Position (위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법)

  • Lee, KyungSeung;Kim, Daehoon;Rho, Seungmin;Hwang, Eenjun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.394-400
    • /
    • 2012
  • SURF is a robust local invariant feature descriptor and has been used in many applications such as object recognition. Even though this algorithm has similar matching accuracy compared to the SIFT, which is another popular feature extraction algorithm, it has advantage in matching time. However, these descriptors do not consider relative location information of extracted interesting points to guarantee rotation invariance. Also, since they use gray image of original color image, they do not use the color information of images, either. In this paper, we propose a method for improving matching performance of SURF descriptor using the color and relative location information of interest points. The location information is built from the angles between the line connecting the centers of interest points and the orientation line constructed for the center of each interest points. For the color information, color histogram is constructed for the region of each interest point. We show the performance of our scheme through experiments.

Segmentation of Pointed Objects for Service Robots (서비스 로봇을 위한 지시 물체 분할 방법)

  • Kim, Hyung-O;Kim, Soo-Hwan;Kim, Dong-Hwan;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • This paper describes how a person extracts a unknown object with pointing gesture while interacting with a robot. Using a stereo vision sensor, our proposed method consists of two stages: the detection of the operators' face, the estimation of the pointing direction, and the extraction of the pointed object. The operator's face is recognized by using the Haar-like features. And then we estimate the 3D pointing direction from the shoulder-to-hand line. Finally, we segment an unknown object from 3D point clouds in estimated region of interest. On the basis of this proposed method, we implemented an object registration system with our mobile robot and obtained reliable experimental results.

  • PDF