• Title/Summary/Keyword: Interest Point Extraction

Search Result 44, Processing Time 0.024 seconds

Face Recognition based on SURF Interest Point Extraction Algorithm (SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구)

  • Kang, Min-Ku;Choo, Won-Kook;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.46-53
    • /
    • 2011
  • This paper proposes a SURF (Speeded Up Robust Features) based face recognition method which is one of typical interest point extraction algorithms. In general, SURF based object recognition is performed in interest point extraction and matching. In this paper, although, proposed method is employed not only in interest point extraction and matching, but also in face image rotation and interest point verification. image rotation is performed to increase the number of interest points and interest point verification is performed to find interest points which were matched correctly. Although proposed SURF based face recognition method requires more computation time than PCA based one, it shows better recognition rate than PCA algorithm. Through this experimental result, I confirmed that interest point extraction algorithm also can be adopted in face recognition.

Distinct Point Detection : Forstner Interest Operator

  • Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.299-307
    • /
    • 1995
  • The extraction of distinct points such as corner points and circular features is a basic procedure in digital photogrammetry and computer vision. This paper describes the extraction of image features from the raw images (gray value images), especially Forstner interest corner points. The mathematical model of the Forstner interest operator as well as the behavior in the presence of noise are investigated. Experiments with real images prove the feasibility of the Forstner interest operator in the field of Digital Photogrammetry.

  • PDF

Gabor Descriptors Extraction in the SURF Feature Point for Improvement Accuracy in Face Recognition (얼굴 인식의 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출)

  • Lee, Jae-Yong;Kim, Ji-Eun;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.808-816
    • /
    • 2012
  • Face recognition has been actively studied and developed in various fields. In recent years, interest point extraction algorithms mainly used for object recognition were being applied to face recognition. The SURF(Speeded Up Robust Features) algorithm was used in this paper which was one of typical interest point extraction algorithms. Generally, the interest points extracted from human faces are less distinctive than the interest points extracted from objects due to the similar shapes of human faces. Thus, the accuracy of the face recognition using SURF tends to be low. In order to improve it, we propose a face recognition algorithm which performs interest point extraction by SURF and the Gabor wavelet transform to extract descriptors from the interest points. In the result, the proposed method shows around 23% better recognition accuracy than SURF-based conventional methods.

Backlight Compensation by Using a Novel Region of Interest Extraction Method (새로운 관심영역 추출 방법을 이용한 역광보정)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.321-328
    • /
    • 2017
  • We have implemented a technique to correct the brightness, saturation, and contrast of an image according to the degree of light, and further compensate the backlight. Backlight compensation can be done automatically or manually. For manual backlight compensation, we have to select the region of interest (ROI). ROI can be selected by connecting the outline of the desired object. We make users select the region delicately with the new magnetic lasso tool. The previous lasso tool has a disadvantage that the start point and the end point must be connected. However, the proposed lasso tool has the advantage of selecting the region of interest without connecting the start point and the end point. We can automatically obtain various results of backlight compensation by adjusting the number of k-means clusters for texture extraction and the threshold value for binarization.

Evaluation on Tie Point Extraction Methods of WorldView-2 Stereo Images to Analyze Height Information of Buildings (건물의 높이 정보 분석을 위한 WorldView-2 스테레오 영상의 정합점 추출방법 평가)

  • Yeji, Kim;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.407-414
    • /
    • 2015
  • Interest points are generally located at the pixels where height changes occur. So, interest points can be the significant pixels for DSM generation, and these have the important role to generate accurate and reliable matching results. Manual operation is widely used to extract the interest points and to match stereo satellite images using these for generating height information, but it causes economic and time consuming problems. Thus, a tie point extraction method using Harris-affine technique and SIFT(Scale Invariant Feature Transform) descriptors was suggested to analyze height information of buildings in this study. Interest points on buildings were extracted by Harris-affine technique, and tie points were collected efficiently by SIFT descriptors, which is invariant for scale. Searching window for each interest points was used, and direction of tie points pairs were considered for more efficient tie point extraction method. Tie point pairs estimated by proposed method was used to analyze height information of buildings. The result had RMSE values less than 2m comparing to the height information estimated by manual method.

GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea (특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출)

  • Lee, Kye Dong;Yoon, Jong Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • The Ministry of Land, Infrastructure and Transport is planning to launch CAS-500 (Compact Advanced Satellite 500) 1 and 2 in 2019 and 2020. Satellite image information collected through CAS-500 can be used in various fields such as global environmental monitoring, topographic map production, analysis for disaster prevention. In order to utilize in various fields like this, it is important to get the location accuracy of the satellite image. In order to establish the precise geometry of the satellite image, it is necessary to establish a precise sensor model using the GCP (Ground Control Point). In order to utilize various fields, step - by - step automation for orthoimage construction is required. To do this, a database of satellite image GCP chip should be structured systematically. Therefore, in this study, we will analyze various techniques for automatic GCP extraction for precise geometry of satellite images.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

Region of Interest Extraction Method and Hardware Implementation of Matrix Pattern Image (매트릭스 패턴 영상의 관심 영역 추출 방법 및 하드웨어 구현)

  • Cho, Hosang;Kim, Geun-Jun;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.940-947
    • /
    • 2015
  • This paper presents the region of interest pattern image extraction method on a display printed matrix pattern. Proposed method can not use conventional method such as laser, ultrasonic waves and touch sensor. It searches feature point and rotation angle using luminance and pattern reliable feature points of input image, and then it extracts region of interest. In order to extract region of interest, we simulate proposed method using pattern image written various angles on display panel. The proposed method makes progress using the OpenCV and the window program, and was designed using Verilog-HDL and was verified through the FPGA Board(xc6vlx760) of Xilinx.

Extraction of Optimal Interest Points for Shape-based Image Classification (모양 기반 이미지 분류를 위한 최적의 우세점 추출)

  • 조성택;엄기현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.362-371
    • /
    • 2003
  • In this paper, we propose an optimal interest point extraction method to support shape-base image classification and indexing for image database by applying a dynamic threshold that reflects the characteristics of the shape contour. The threshold is determined dynamically by comparing the contour length ratio of the original shape and the approximated polygon while the algorithm is running. Because our algorithm considers the characteristics of the shape contour, it can minimize the number of interest points. For n points of the contour, the proposed algorithm has O(nlogn) computational cost on an average to extract the number of m optimal interest points. Experiments were performed on the 70 synthetic shapes of 7 different contour types and 1100 fish shapes. It shows the average optimization ratio up to 0.92 and has 14% improvement, compared to the fixed threshold method. The shape features extracted from our proposed method can be used for shape-based image classification, indexing, and similarity search via normalization.

ROI Based Object Extraction Using Features of Depth and Color Images (깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출)

  • Ryu, Ga-Ae;Jang, Ho-Wook;Kim, Yoo-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.395-403
    • /
    • 2016
  • Recently, Image processing has been used in many areas. In the image processing techniques that a lot of research is tracking of moving object in real time. There are a number of popular methods for tracking an object such as HOG(Histogram of Oriented Gradients) to track pedestrians, and Codebook to subtract background. However, object extraction has difficulty because that a moving object has dynamic background in the image, and occurs severe lighting changes. In this paper, we propose a method of object extraction using depth image and color image features based on ROI(Region of Interest). First of all, we look for the feature points using the color image after setting the ROI a range to find the location of object in depth image. And we are extracting an object by creating a new contour using the convex hull point of object and the feature points. Finally, we compare the proposed method with the existing methods to find out how accurate extracting the object is.