• Title/Summary/Keyword: Interest Point

Search Result 1,263, Processing Time 0.025 seconds

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • Oh, Kyong-Joo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

Comparison of the Interest in Anti-Aging, Need for Anti-Aging Services and the Performance of Health Promotion Behavior by Sex in their 20s (20대 성인에서 성별에 따른 항노화에 대한 관심도 및 건강증진행위 수행도 및 항노화서비스의 필요성 비교)

  • Her, Eun-Sil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • This aim of this study examined the relationship among the interest in anti-aging, health promotion behaviors and the need for anti-aging services by their 20s. Survey was conducted among adults from their 20s in the Changwon City. 228 responses were used for analysis. The overall average score of the interest and effort of anti-aging were 2.97 point and 2.62 point (out of 5), respectively. And those were both higher in female than men (p<0.01~p<0.001). The overall average score of need for anti-aging service was 3.50 point(total score is 5). In The demand for each area of anti-aging service were ≥3.5 point in all 5 areas, and stress management (4.00 point) was the highest, while the beauty management (3.60 point) was the lowest. There were significant differences in all five areas by sex (p<0.01~p<0.001). The overall score of the performance of health promotion behaviors was 2.44 point(total score is 4), and the interpersonal relationship score (2.85 point) was the highest, while the health responsibility score (2.08 point) was the lowest. The interest in anti-aging and performance of health promotion behaviors showed positive relationship to anti-aging services, and their explanation powers were 34.6% (p<0.001). The results of this study suggest be used as data to establish strategies revitalizing various anti-aging service in the twenties.

Artificial Neural Networks for Interest Rate Forecasting based on Structural Change : A Comparative Analysis of Data Mining Classifiers

  • Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.641-651
    • /
    • 2003
  • This study suggests the hybrid models for interest rate forecasting using structural changes (or change points). The basic concept of this proposed model is to obtain significant intervals caused by change points, to identify them as the change-point groups, and to reflect them in interest rate forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in the U. S. Treasury bill rate dataset. The second phase is to forecast the change-point groups with data mining classifiers. The final phase is to forecast interest rates with backpropagation neural networks (BPN). Based on this structure, we propose three hybrid models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported model, (2) case-based reasoning (CBR)-supported model, and (3) BPN-supported model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the prediction ability of hybrid models to reflect the structural change.

  • PDF

Gabor Descriptors Extraction in the SURF Feature Point for Improvement Accuracy in Face Recognition (얼굴 인식의 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출)

  • Lee, Jae-Yong;Kim, Ji-Eun;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.808-816
    • /
    • 2012
  • Face recognition has been actively studied and developed in various fields. In recent years, interest point extraction algorithms mainly used for object recognition were being applied to face recognition. The SURF(Speeded Up Robust Features) algorithm was used in this paper which was one of typical interest point extraction algorithms. Generally, the interest points extracted from human faces are less distinctive than the interest points extracted from objects due to the similar shapes of human faces. Thus, the accuracy of the face recognition using SURF tends to be low. In order to improve it, we propose a face recognition algorithm which performs interest point extraction by SURF and the Gabor wavelet transform to extract descriptors from the interest points. In the result, the proposed method shows around 23% better recognition accuracy than SURF-based conventional methods.

Object detection within the region of interest based on gaze estimation (응시점 추정 기반 관심 영역 내 객체 탐지)

  • Seok-Ho Han;Hoon-Seok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.117-122
    • /
    • 2023
  • Gaze estimation, which automatically recognizes where a user is currently staring, and object detection based on estimated gaze point, can be a more accurate and efficient way to understand human visual behavior. in this paper, we propose a method to detect the objects within the region of interest around the gaze point. Specifically, after estimating the 3D gaze point, a region of interest based on the estimated gaze point is created to ensure that object detection occurs only within the region of interest. In our experiments, we compared the performance of general object detection, and the proposed object detection based on region of interest, and found that the processing time per frame was 1.4ms and 1.1ms, respectively, indicating that the proposed method was faster in terms of processing speed.

Structural Change Analysis in a Real Interest Rate Model (실질금리 결정모형에서의 구조변화분석)

  • 전덕빈;박대근
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.119-133
    • /
    • 2001
  • It is important to find the equilibrium level of real interest rate for it affects real and financial sector of economy. However, it is difficult to find the equilibrium level because like the most macroeconomic model the real interest model has parameter instability problem caused by structural change and it is supported by various theories and definitions. Hence, in order to cover these problems structural change detection model of real interest rate is developed to combine the real interest rate equilibrium model and the procedure to detect structural change points. 3 equations are established to find various effects of other interest-related macroeconomic variables and from each equation, structural changes are found. Those structural change points are consistent with common expectation. Oil Crisis (December, 1987), the starting point of Economic Stabilization Policy (January, 1982), the starting point of capital liberalization (January, 1988), the starting and finishing points of Interest deregulation (January, 1992 and December, 1994), Foreign Exchange Crisis (December, 1977) are detected as important points. From the equation of fisher and real effects, real interest rate level is estimated as 4.09% (October, 1988) and dependent on the underlying model, it is estimated as 0%∼13.56% (October, 1988), so it varies so much. It is expected that this result is connected to the large scale simultaneous equations to detect the parameter instability in real time, so induces the flexible economic policies.

  • PDF

Calculation of Tissue-Air Ratios(TAR) in Irregularly shaped Field for Co-60 Gamma Radiation (CO-60 감마선에 대한 부정형조사면의 조직공중선량비 (TAR) 계산)

  • Ji Young-Hoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 1989
  • In order to calculate the dose on each interest point in five types of irregularly shaped fields used commonly in radiotherapy, the tissue-air ratios (TAR) in these fields for Go-60 gamma radiation were calculated using the newly devised SAR-chart. The TARs calculated from newly method of using the SAR-chart, computer method and approximation method at the interest point were compared to the TARs obtained from measurement. The result are as follows; In case of the interest points on central axis the calculated TARs in irregularly shaped fields by the above mentioned methods were well agreed within the error of $1\%$, whereas for the interest points on off-axis the calculated TARs were resulted in the maximum errors of $2.4\%,\;2.3\%$ and $8.8\%$ respectively. From these results, the accuracy of calculation method of using the SAR-chart was comfirmed.

  • PDF

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.

PCRM: Increasing POI Recommendation Accuracy in Location-Based Social Networks

  • Liu, Lianggui;Li, Wei;Wang, Lingmin;Jia, Huiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5344-5356
    • /
    • 2018
  • Nowadays with the help of Location-Based Social Networks (LBSNs), users of Point-of-Interest (POI) recommendation service in LBSNs are able to publish their geo-tagged information and physical locations in the form of sign-ups and share their experiences with friends on POI, which can help users to explore new areas and discover new points-of-interest, and promote advertisers to push mobile ads to target users. POI recommendation service in LBSNs is attracting more and more attention from all over the world. Due to the sparsity of users' activity history data set and the aggregation characteristics of sign-in area, conventional recommendation algorithms usually suffer from low accuracy. To address this problem, this paper proposes a new recommendation algorithm based on a novel Preference-Content-Region Model (PCRM). In this new algorithm, three kinds of information, that is, user's preferences, content of the Point-of-Interest and region of the user's activity are considered, helping users obtain ideal recommendation service everywhere. We demonstrate that our algorithm is more effective than existing algorithms through extensive experiments based on an open Eventbrite data set.

Point of Interest Recommendation System Using Sentiment Analysis

  • Gaurav Meena;Ajay Indian;Krishna Kumar Mohbey;Kunal Jangid
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.2
    • /
    • pp.64-78
    • /
    • 2024
  • Sentiment analysis is one of the promising approaches for developing a point of interest (POI) recommendation system. It uses natural language processing techniques that deploy expert insights from user-generated content such as reviews and feedback. By applying sentiment polarities (positive, negative, or neutral) associated with each POI, the recommendation system can suggest the most suitable POIs for specific users. The proposed study combines two models for POI recommendation. The first model uses bidirectional long short-term memory (BiLSTM) to predict sentiments and is trained on an election dataset. It is observed that the proposed model outperforms existing models in terms of accuracy (99.52%), precision (99.53%), recall (99.51%), and F1-score (99.52%). Then, this model is used on the Foursquare dataset to predict the class labels. Following this, user and POI embeddings are generated. The next model recommends the top POIs and corresponding coordinates to the user using the LSTM model. Filtered user interest and locations are used to recommend POIs from the Foursquare dataset. The results of our proposed model for the POI recommendation system using sentiment analysis are compared to several state-of-the-art approaches and are found quite affirmative regarding recall (48.5%) and precision (85%). The proposed system can be used for trip advice, group recommendations, and interesting place recommendations to specific users.