• Title/Summary/Keyword: Intercritical temperature

Search Result 20, Processing Time 0.028 seconds

Effect of Initial Structure on the Retained Austenite and Tensile Properties of Fe-Si-Mn-P Steel Sheet (Fe-Si-Mn-P강판의 초기조직변화가 잔류오스테나이트 형성 및 인장성질에 미치는 영향)

  • Moon, Won-Jin;Kang, Chang-Yong;Kim, Han-Goon;Kim, Ki-Don;Sung, Jang-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.10-19
    • /
    • 1997
  • This study has been conducted to investigate the effects of initial structure on the microstructure and tensile properties of high strength trip steel sheet. The initial structure before austempering remarkably influenced the second phase. The specimen with normalized initial structure showed mainly bainitic ferrite and retained austenite, while the as rolled specimen and spherodized specimen showed martensite plus retained austenite and martensite plus bainitic ferrite with small retained austenite, respectively. Two type of retained austenite, film type and granual type were observed in all specimens. The as rolled specimen appeared the highest contents of retained austenite owing to the compressive stress by cold rolling. The contents of retained austenite increased with increasing intercritical annealing temperature and austempering time. Tensile strength showed the highest in the as rolled specimen, while the highest elongation were obtained in the normalized specimen. The maximum T.S.${\times}$El. Value showed in normalized initial structure and increased with increasing intercritical annealing and austempering time. The highest Value of T.S.${\times}$El. obtained at austempering temperature of $400^{\circ}C$ and retained austenite of 12%.

  • PDF

A Study on the Transformation Behaviors of a Multi-phase (Ferrite-Bainite-Martensite) in Ductile Cast Iron (구상흑연주철(球狀黑鉛鑄鐵)의 3상혼합조직(相混合組織)의 변태거동(變態擧動)에 관(關)한 연구(硏究))

  • Kim, Sug-Won;Kim, Dong-Keun;Yo, Seon-Kyung
    • Journal of Korea Foundry Society
    • /
    • v.11 no.5
    • /
    • pp.406-413
    • /
    • 1991
  • Ductile cast iron(DCI) with a multi-phase(ferrite-bainite-martensite) structures was produced by various special heat treatment. Intercritical heat treatment(I. C.), intermediate heat treatment(I. M.) and step quenching(S. Q.) were used to strengthen and toughen the fracture initiation sites such as graphite-marix interfaces and eutectic cell boundaries in DCI. The purpose of this study was to investigate of DCI by the special heat treatment. (I. C., I. M., and S. Q.) At a result, bainite nucleation rate at higher temperature was higher than that of at lower temperature, and shapes of bainite and martensite became bar /spheroidal type with increase of isothermal transformation time.

  • PDF

Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod (고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향)

  • JongHyeok Lee;ByoungLok Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.230-236
    • /
    • 2023
  • The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

Development of Al-added High Strength Galvannealed Daul Phase Steel Sheets

  • Kim, Dong-Eun;Han, Young-Chul;Ko, Heung Seok;Kim, Jong-Gi;Moon, Man-Been
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.162-166
    • /
    • 2011
  • Effects of chemical compositions and manufacturing conditions on mechanical properties and microstructures were investigated in order to obtain galvannealed high strength dual phase steel sheets with superior mechanical properties and coating properties. An intercritical annealing between Ac1 and Ac3 was conducted to produce the DP (dual phase) steel sheets, followed by quenching to room temperature. The purposes of Al addition are to reduce the iron oxidation with chemical composition (Si, Mn etc.) and to improve the wettability by liquid zinc. The present study will focus on the characterization for making dual phase steel sheets and enhancing the galvanizability of Al added DP steel sheets about continuous annealing line in CGL.

Microstructural Evolution of Grade 91 Steel upon Heating at 760~1000℃

  • He, Yinsheng;Chang, Jungchel;Lee, Je-Hyun;Shin, Keesam
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.607-611
    • /
    • 2015
  • The microstructural evolution of Grade 91 tempered martensite ferritic steels heat treated at $760{\sim}1000^{\circ}C$ for two hours was investigated using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), electron backscattered diffraction (EBSD), and transmission electron microscopy(TEM); a microhardness tester was also employed, with a focus on the grain and precipitate evolution process as well as on the main hardening element. It was found that an evolution of tempered martensite to ferrite($760{\sim}850^{\circ}C$), and to fresh martensite($900{\sim}1000^{\circ}C$), occurred with the increase of temperature. Simultaneously, the parabolic evolution characteristics of the low angle grain boundary(LAGB) increased with the increase of the heating temperature(highest fraction of LAGB at $925^{\circ}C$), indicating grain recovery upon intercritical heating. The main precipitate, $M_{23}C_6$, was found to be coarsened slightly at $760{\sim}850^{\circ}C$; it then dissolved at $850{\sim}1000^{\circ}C$. Besides this, $M_3C$ cementite was formed at $900{\sim}1000^{\circ}C$. Finally, the experimental results show that the hardness of the steel depended largely on the matrix structure, rather than on the precipitates, with the fresh martensite showing the highest hardness value.

Effect of Mn Addition on the Microstructural Changes and Mechanical Properties of C-Mn TRIP Steels (C-Mn TRIP강의 미세조직 변화와 기계적 성질에 미치는 Mn 첨가의 영향)

  • Hong, H.;Lee, O.Y.;Song, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.205-210
    • /
    • 2003
  • Various types of high strength steel sheets were usually used for improving the automobile safety and fuel efficiency by reducing the vehicle weight. The present study aimed to develop the TRIP (transformation induced plasticity) aided high-strength low carbon steel sheets by using a reverse transformation process. The 0.1C-4~8Mn steels were reverse-transformed by slow heating to intercritical temperature region and then furnace cooled to the room temperature. Granular type retained austenite was observed in 4Mn steel and lath type retained austenite was also observed in 6~8Mn steel. The results show that the 6Mn steel under reverse transformed at $625^{\circ}C$ for 6 hrs has maximum elongation up to 39%. The optimum strength-elongation combination was 3,888 ($kg/mm^2{\times}%$) when the 8Mn steel was reverse transformed at $625^{\circ}C$ for 12 h.

Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels (C-Mn계 TRIP강의 잔류오스테나이트 생성과 기계적 성질에 미치는 역변태처리의 영향)

  • You J. S;Hong H;Lee O. Y;Jin K. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.126-132
    • /
    • 2004
  • The high strength steel sheets has been widely used as the automobile parts to reduce the weight of a vehicle. The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The 0.15C-4Mn and 0.15C-6.5Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and air cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $645^{\circ}C$ for 12 hrs. was about 46vol.% in hot rolled 0.lC-6.5Mn steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The tendency of tensile strength to increase with increasing the holding temperature was due to the decrease of retained austenite after cooling from the higher temperature of $670 ^{\circ}C$. The maximum strength-ductility combination was about 4,250 kg/$\textrm{mm}^2$ㆍ% when the hot rolled 0.lC-6.5Mn steel was reversely transformed at $645^{\circ}C$ for 12 hrs.

Formation of Retainted Austenite and Mechanical Properties of 4~8%Mn Hot Rolled TRIP Steels (4~8%Mn 열연 TRIP강의 잔류오스테나이트 생성과 기계적 성질)

  • Kim D. E.;Park Y. K.;Lee O. Y.;Jin K. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.115-120
    • /
    • 2005
  • The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The $4\~8\%$ Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and furnace cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $625^{\circ}C$ for 6 hrs was about $50\;vol.\%$ in the $8\%Mn$ steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The maximum strength-ductility combination of 40,000 $MPa{\cdot}\%$ was obtained when the $8\%Mn$ steel reversely transformed at $625^{\circ}C$ for 12 hrs. However, it's property was significantly decreased at higher holding temperature of $675^{\circ}C$ resulting from the decrease of ductility.

The Effect of Heat Input on Fracture Toughness(CTOD) in Submerged Arc Offshore Steel Weldments (해양구조용강재의 SA용접부에서 입열량이 파괴인성에 미치는 영향에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Shin, Yong-Taek;Lee, Hae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.40-47
    • /
    • 2004
  • The influence of heat input on fracture toughness was investigated in SAW weldments, which were prepared at two different welding conditions in API 2W Gr.50 and EN10225 5420. By examining the fracture initiation point, refined areas(ICHAZ and SCHAZ) in weld metal was identified as local brittle zone, in which M-A constituents and coarsed grain size were observed. Impact values showed the most significant difference at root portion, and CTOD transition temperature was related with impact values obtained at root portion. Hardness values in refined area were less than columnar microstructure about 20 HV5.

Effect of Fabrication Processes on the Mechanical Properties of 0.14C-6.5Mn TRIP Steels (0.14C-6.5Mn TRIP강의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, O-Yeon;Ryu, Seong-Il
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.431-437
    • /
    • 2001
  • This research was examined the effect of intercritical heat treatment on the mechanical Properties and retained austenite formation in 0.1C-6.5Mn steels for the development of a high strength high ductility steel. using of transformation induced plasticity due to retained austenite. The stability of retained austenite is very important for the good ductility and it depend on diffusion of carbon and manganese during reverse transformation. It is effective to heat treat at$ 645^{\circ}C$ in order to obtain over 30 vol.% of retained austenite. However, it is more desirable to heat treat at $620^{\circ}C$, considering the volume fraction and mechanical stability of retained austenite. The strength-elongation combination in cold rolled steel sheets after reverse transformed at $620^{\circ}C$ for 1hr was about 4000k9/mm7, but it decreased rapidly with increasing holding time at high temperature due to the decrease of ductility. The addition of 1.1%Si in 0.14C-6.5Mn TRIP steel does not improve the mechanical properties and retained austenite formation.

  • PDF