• Title/Summary/Keyword: Intercalation

Search Result 388, Processing Time 0.02 seconds

Effect of Number and Location of Amine Groups on the Thermodynamic Parameters on the Acridine Derivatives to DNA

  • Kwon, Ji Hye;Park, Hee-Jin;Chitrapriya, Nataraj;Han, Sung Wook;Lee, Gil Jun;Lee, Dong Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.810-814
    • /
    • 2013
  • The thermodynamic parameters for the intercalative interaction of structurally related well known intercalators, 9-aminoacridine (9AA) and proflavine (PF) were determined by means of fluorescence quenching study. The fluorescence intensity of 9AA decreased upon intercalation to DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$]. A van't Hoff plot was constructed from the temperature-dependence of slope of the ratio of the fluorophore in the absence and presence of a quencher molecule with respect to the quencher concentration, which is known as a Stern-Volmer plot. Consequently, the thermodynamic parameters, enthalpy and entropy change, for complex formation was calculated from the slope and y-intercept of the van't Hoff plot. The detailed thermodynamic profile has been elucidated the exothermic nature of complex formation. The complex formation of 9AA with DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$] was energetically favorable with a similar negative Gibb's free energy. On the other hand, the entropy change appeared to be unfavorable for 9AA-poly[$d(G-C)_2$] complex formation, which was in contrast to that observed with native DNA and poly[$d(A-T)_2$] cases. The equilibrium constant for the intercalation of PF to poly[$d(G-C)_2$] was larger than that to DNA, and was the largest among sets tested despite the most unfavorable entropy change, which was compensated for by the largest favorable enthalpy. The favorable hydrogen bond contribution to the formation of the complexes was revealed from the analyzed thermodynamic data.

Simultaneous Exfoliation and Dispersion of Graphene/Carbon Nanotube via Intercalation Reaction and Its Application as Conductive Composite Film (층간삽입 반응을 이용한 그래핀/탄소나노튜브 동시 개별 분산 및 전도성 복합 필름으로의 응용)

  • Kim, Jungmo;Kim, Jin;Yoon, Hyewon;Park, Minsu;Novak, Travis;Ashraful, Azam;Lee, Jinho;Jeon, Seokwoo
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.104-110
    • /
    • 2016
  • This paper reports a novel method for simultaneous exfoliation of graphene and dispersion of carbon nanotube by using intercalation method. In common, graphene flake and carbon nanotubes can be produced through individual exfoliation or debundling process, but the process require significant amount of time. Here, potassium sodium tartrate was thermally intercalated into graphite and carbon nanotube bundle for simultaneous exfoliation and dispersion of graphene and carbon nanotubes. We confirmed expansion of interlayer distance via XRD, and also found that oxidation level of the exfoliated materials were significantly low (below 8.3 at%). The produced materials are fabricated in to conductive composite film via vacuum filtration and spray deposition to show enhancement of conductive properties.

Synthesis and Characterization of Allyl Ester Resin-Layered Silicate Nanocomposite (알릴 에스터 수지-층상 실리케이트 나노복합재료의 합성과 특성)

  • 팽세웅;김장엽;허완수;조길원;이상원
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • Polymer-clay nanocomposite containing the low amounts of clay shows improved physical, mechanical properties. In this study, allyl ester prepolymer was synthesised by reactions of the diallyl terephthalate monomers and the 1,3-butanediol monomers. Nanocomposites of allyl ester prepolymer and the two kinds of the organically layered silicate were prepared by using the intercalation method as well as the in-situ polymerization method using. By varying the amount of clay content, curing conditions, and feeding conditions. the nanocomposite was studied using X-ray diffraction. From XRD results, allyl ester-Cloisite 30 B nanocomposite made by the in-situ polymerization method shows better exfoliation behavior compared with the intercalation method. It can be said that the transesterification reaction between functional groups (-OH) of intercalant and monomers results in the increased gallery distance. Also mechanical and thermal properties indicate that the dispersity of clay is an important factor for improving physical properties of the nanocomposite.

Preparation and Performance of Synthetic Organo-beidellite (유기 바이델라이트의 합성 및 거동 연구)

  • Ryu, Gyoung-Won;Jang, Young-Nam;Cho, Sung-Jun;Choi, Sang-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.2 s.48
    • /
    • pp.123-128
    • /
    • 2006
  • Beidellite, a member of the dioctahedral smectite group, was synthesized hydrothermally from dickite. Organophilic [DEACOOH]-beidellite intercalation complex was formed by the cation exchange reaction between synthetic Na-beidellite and [DEACOOH]Br. The products dried in high vacuum were treated with various organic solvent such as methanol, ethanol, acetone, ether, acetonitrile and caprolactam in order to determine the swelling behaviour of the prepared complexes. After drying under high vacuum, basal spacing of [DEACOOH]-beidellite shows 15.1 ${\AA}$, and it changed to 19.4, 29.9, 15.9, 16.8, 14.8, 26.5 and 14.8 ${\AA}$ under distilled water, methanol, ethanol, acetone, ether, acetonitrile and caporlactam, respectively. Especially, the characteristics of the intercalation complexes and their swelling behavior of the synthetic beidellite and natural montmorillonite were compared.

Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites (그라파이트 인터칼레이션 컴파운드가 에폭시 복합재료의 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Park, Gyu-Dae;Choi, Sung-Kyu;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.389-394
    • /
    • 2015
  • The sound absorption coefficient and sound transmission loss of graphite intercalation compound (GIC) included epoxy composites were investigated. Epoxy resin was infused into the expanded GIC and the impedance tube method was employed to measure the sound absorption coefficient and sound transmission loss. Scanning electron microscopy photographs showed uniform distribution of the GIC in the epoxy matrix. The surface density of epoxy/GIC (20 wt%) composites decreased about 56% compared to that of pure epoxy. The sound absorption coefficient of composites increased about 3 times at the frequency range of 500~1000 Hz compared to the pure epoxy. The sound transmission loss of composites decreased with increasing the GIC content and it is attributed to the increase of pores in the composites.

The Initial Irreversible Capacity of the Lithium Ion Battery System Using by the Gradual Control of State of Charge

  • Doh, Chil-Hoon;Choi, Sang-Jin;Jin, Bong-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.173-177
    • /
    • 2002
  • Electrochemical characteristics of a graphite/lithium and a $LiCoO_2/lithium$ half cell and a $graphite/LiCoO_2$ full cell were analyzed using a GCSOC (gradual control test of the state of charge) technique. The IIE (initial intercalation coulombic efficiency), which represents lithium intercalation property of the electrode material, and the $lIC_s$ (initial irreversible capacity by the surface), which represents irreversible reaction between the electrode surface and the electrolyte were obtained from the GCSOC analysis. Linear-fittable capacity ranges of IIE of graphite and $LiCoO_2$ electrodes were 370 and 150 mAh/g, respectively, based on material weight. The value of lIE for graphite and $LiCoO_2$ electrodes were $93-94\%$ and $94-95\%$, respectively. The value of IICs for graphite and $LiCoO_2$ electrodes were 15-17 mAh/g and 0.3-1.7 mAh/g, respectively. The value of IIE for $graphite/LiCoO_2$ full cell, used GX25 and DJG311 as a graphite, was $89-90\%$ that lower than that for the half cells. Parameters of IIE and IICs can also be used to represent not only half cell but also full cell.

The Analysis of Energy Character and Synthesis of Lithium-Carbon Intercalation Compounds (리튬-탄소층간화합물의 합성과 에너지 특성의 분석)

  • 오원춘;백대진;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.167-175
    • /
    • 1993
  • Lithium-Carbon Intercalation Compounds(Li-CICs) have been synthesized from various carbon ma-terials by use of the modified stainless steel two-bulbs methods. These compounds had various colours by structural character of starting materials. The synthesized Li-CICs were identified to stage formation process by X-ray diffraction data. At these results, well-oriented natural graphite and graphite fiber are formed lower stages(Stage 1, Stage 2), but poor-oriented carbon fiber and petroleum cokes are also formed higher stages(Stage 3, Stage 4, Stage 5). And when we compared with measured d value and calculated d value, these values agreed with each other. But poor-oriented carbon materials are some difference from them. The stage stability and energy stage of Li-CICs were obtained by UV/VIS Spectrophotometric data. X-ray diffraction and UV/VIS Spectrophotometric data suggested that well-oriented carbon materials has distingushible curve between energy and reflectance. In these results, we know that many charge carriers between carbon layers are related to concentration of intercalants. And then, this paper also provides information on high efficiency energy storing materials at intercalation process of Li-CICs.

  • PDF

Membrane Application of Polymer/Layered Silicate Nanocomposite (고분자/층상실리케이트 나노복합체의 분리막에의 응용)

  • Park, Ji-Soon;Rhim, Ji-Won;Goo, Hyung-Seo;Kim, In-Ho;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.255-271
    • /
    • 2005
  • polymer/layered silicate nanocomposite (PLSNs) is new type of materials, based on clays usually rendered hydrophobic through ionic exchange of the sodium interlayer cation with an onium cation. It could be prepared via various synthetic routes comprising exfoliation adsorption, in situ intercalative polymerization and melt intercalation. The whole range of polymer is used, i.e. thermoplastics, thermosets and elastomers as a matrix. Two types of structure may be obtained, namely intercalated nanocomposites where the polymer chains are sandwiched in between silicate layers and exfolicate nanocomposites where the separated, individual silicate layers are more or less uniformly dispersed in the polymer matrix. This new family of materials exhibits enhanced properties at very low filer level, usually inferior to 5wt$\%$, such as increased mechanical properties, increase in thermal stability and gas barrier properties and good flame retardancy. Gas permeability through the PLSNs films decreased due to increased tortuosity made by intercalation or exfoliation of clay in polymer.

Synthesis and Characterization of Li-Graphite intercalation Compounds (리튬-흑연 층간 화합물의 합성 및 특성)

  • Oh, Won-Chun;Kim, Myung-Kun;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 1994
  • Li-GICs as a high performance energy storager were synthesized as a function of the Li content by the admixture and add-pressure method. The characteristics of these prepared compounds have been determined from the studies by X-ray diffraction, UV-VIS spectrometry and CHN analysis. It follows from the results of X-ray diffraction that the lower-stage intercalation compounds are formed as the Li contents increase, however the mixed stages in these compounds are also observed. In the case of the $Li_{40wt%}$, the compound with the structure of stage 1 has been predominently, but the structure of only stage 1 is not obtained. The $d_{001}$ value of stage 1 was determined to be ca. $3.70{\AA}$. An analysis of spectrometric data shows that each of the compounds gives distingushible energy state spectra. It is seen from the spectra that the positions of $R_{min}$ values, with increase in the Li contents, are shifted in the region of higher energy state. Such a result can be attributed to the formation of stable stages. The results of CHN analysis allow us to find the mixing state related to chemical compositions of the intercalated compounds and the superiority to admixture and add-pressure method. From the results determined, it reveals that $Li_{10wt%}$-GIC and $Li_{20wt%}$-GIC can be utilized for an anode of rechargable battery.

  • PDF

Electrochemical Characteristic on Lithium Intercalation into the Interface between Organic Electrolyte and Amorphous WO3 Thin Film Prepared by e-beam Evaporation Method (e-beam 증발법으로 제조된 비정질 WO3박막과 전해질 계면으로 삽입되는 리튬의 층간 반응에 관한 전기화학적 특성)

  • Min, Byoung-Chul;Sohn, Tae-Won;Ju, Jeh-Beck
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1022-1028
    • /
    • 1997
  • This work was performed to study the characteristics of electrochemical intercalation reactions occurring at the interface between the organic electrolyte and tungsten trioxide thin film (thickness of $4000{\AA}$) prepared by e-beam evaporation method as cathodically coloring oxide with regard to the electrochromism by the intercalating reactions of the lithium cation in the 1M $LiClO_4/PC$ organic solution. The characteristics of electrochemical intercalation reactions were investigated by various DC electrochemical methods such as cathodic Tafel polarization test, multiple and the single sweep cyclic voltammetry and the coulomety titrations method. The surfaces of thin films were observed with the patterns of X ray diffraction after the coloring and bleaching reactions. In comparison with the previous results that $WO_3$ thin film intersely detached from the surface of electrode when the hydrogen cation was intercalated into $WO_3$ thin film in the o.1N $H_2SO_4$ aqueous solution, the intercalation reaction of lithium cation into $WO_3$ thin film in the 1M $LiClO_4/PC$ organic solution was shown that the stable bleaching and coloration was appeared within 1.0V of the applied overpotential. When the overpotential of electrochromic reaction for lithium cation in the 1M $LiClO_4/PC$ organic solution had been applied up to 1.5V, the accumulation phenomenon of lithium in amorphous $WO_3$ thin film layer occurred because the inserted lithium into amorphous $WO_3$ thin layer for coloring process was not fully removed from the thin layer to the electrolyte during bleaching process. It was found that there is a limitation of applied overpotential for coloring process by the reduction of the current densities of bleaching and coloration after few number of coloring and bleaching cycles.

  • PDF