• 제목/요약/키워드: Interatomic potential

검색결과 23건 처리시간 0.023초

경사진 <100> 결정립계의 계면분리 거동에 관한 분자동역학 전산모사 (Decohesion of <100> Symmetric Tilt Copper Grain Boundary by Tensile Load Using Molecular Dynamics Simulation)

  • 뉴엔타오;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.38-41
    • /
    • 2009
  • Debonding behavior of symmetric tilt bicrystal interfaces with <100> misorientation axis is investigated through molecular dynamics simulations. FCC single crystal copper is considered in each grain and the model is idealized as a grain boundary under mechanical loading. Embedded-Atom Method potential is chosen to calculate the interatomic forces between atoms. Constrained tensile deformations are applied to a variety of misorientation angles in order to estimate the effect of grain boundary angle on local peak stress. A new parameter of symmetric grain-boundary structure is introduced and refines the correlation between grain boundary angle and local peak stress.

  • PDF

탄소와 구리의 마찰 및 마모에 관한 분자 동역학 시뮬레이션 (Molecular Dynamics Simulation of Friction and Wear Behavior Between Carbon and Copper)

  • 김광섭;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, friction and wear behaviors between monocrystalline, defect-free copper and carbon on the atomic scale are investigated by using 2-dimensional molecular dynamics simulation. It is assumed that all interatomic forces are given by Morse potential. The deformation of carbon is assumed to be neglected and vacuum condition is also assumed. Average friction and normal forces for various surface conditions, various scratch speeds and scratch depths are obtained from simulations. Changes of wear behaviors for various scratch speeds and surface conditions are investigated by observing snapshots in scratch process. The effects of surface conditions, scratch speeds, and scratch depths on the friction force, normal force, and friction coefficient are also investigated.

고압력하에서의 $\alpha-quartz$$\alpha-quartz$$GeO_2$의 상전이에 관한 분자동력학시뮬레이션 (Molecular Dynamic Simulations of the Phase Transition of $\alpha-quartz$ and $\alpha-quartz-type$-type $GeO_2$ under High Pressure)

  • 김대원;노광수;최희락;성태현
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.713-721
    • /
    • 1997
  • Molecular dynamic (MD) simulations with new interatomic potential function including the covalent bond were performed on the phase transition of $\alpha$-quartz-type GeO2 under high pressure. The optimized crystal structure and the pressure dependence of the lattice constant showed higher reproducibility than the previous models and were in very good agreement with the experimental data. A phase transition of $\alpha$-quartz and $\alpha$-quartz-type GeO2 by simulation was found approximately 24 GPa and 6-7 GPa, respectively. This phase transition involved an abrupt volume shrinkage and showed 4-6 coordination mixed structure with the increasing in the coordination number of cation.

  • PDF

Atomistic analysis of nano/micro biosensors

  • Chen, James;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • 제3권2호
    • /
    • pp.111-121
    • /
    • 2010
  • Dynamic analysis of nano/micro bio-sensors based on a multiscale atomistic/continuum theory is introduced. We use a generalized atomistic finite element method (GAFEM) to analyze a bio-sensor which has $3{\times}N_a{\times}N_p$ degrees of freedom, where $N_p$ is the number of representative unit cells and $N_a$ is the number of atoms per unit cell. The stiffness matrix is derived from interatomic potential between pairs of atoms. This work contains two studies: (1) the resonance analysis of nano bio-sensors with different amount of target analyte and (2) the dependence of resonance frequency on finite element mesh. We also examine the Courant-Friedrichs-Lewy (CFL) condition based on the highest resonance frequency. The CFL condition is the criterion for the time step used in the dynamic analysis by GAFEM. Our studies can be utilized to predict the performance of micro/nano bio-sensors from atomistic perspective.

HYBRIDIZATION EFFECTS IN $RT_2$ COMPOUNDS (R = Ce, Pr, Nd, Sm, Gd; T = Fe, Co, Ni)

  • Kang, Kicheon;Min, B.I.;Kang, J.S.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.376-379
    • /
    • 1995
  • Employing the muffin-tin-orbital theory combined with pseudo-potential concepts, we have evaluated hybridization matrix elements between R and T sites in $RT_{2}$ compounds. The matrix elements are calculated with two parameters, the interatomic distance between R and T atoms from the crystal structure data, and the expectation values of the radial distances for the radial wave functions of the ground state charge densities, which are obtained from the linearized muffin-tin orbital band method within the local density approximation. It is found that the R 4f/T 3d hybridization matrix elements decrease with an increasing atomic number from R=Ce to Gd, and that they are smaller in $RNi_{2}$ than in $RCo_{2}$, which are consistent with trends observed in recent photoemission spectroscopy experiments. It is also found that the magnitudes of the hybridization matrix elements in $RFe_{2}$ are comparable to those in $RNi_{2}$.

  • PDF

MEMS 부품 제조를 위한 나노 리소그래피 공정의 3차원 분자동력학 해석 (Three Dimensional Molecular Dynamics Simulation of Nano-Lithography Process for Fabrication of Nanocomponents in Micro Electro Mechanical Systems (MEMS) Applications)

  • 김영석;이승섭;나경환;손현성;김진
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1754-1761
    • /
    • 2003
  • The atomic force microscopy (AFM) based lithographic technique has been used directly to machine material surface and fabricate nano components in MEMS (micro electro mechanical system). In this paper, three-dimensional molecular dynamics (MD) simulations have been conducted to evaluate the characteristic of deformation process at atomistic scale for nano-lithography process. Effects of specific combinations of crystal orientations and cutting directions on the nature of atomistic deformation were investigated. The interatomic force between diamond tool and workpiece of copper material was assumed to be derived from the Morse potential function. The variation of tool geometry and cutting depth was also evaluated and the effect on machinability was investigated. The result of the simulation shows that crystal plane and cutting direction significantly influenced the variation of the cutting forces and the nature of deformation ahead of the tool as well as the surface deformation of the machined surface.

Identification of crystal variants in shape-memory alloys using molecular dynamics simulations

  • Wu, Jo-Fan;Yang, Chia-Wei;Tsou, Nien-Ti;Chen, Chuin-Shan
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.41-54
    • /
    • 2017
  • Shape-memory alloys (SMA) have interesting behaviors and important mechanical properties due to the solid-solid phase transformation. These phenomena are dominated by the evolution of microstructures. In recent years, the microstructures in SMAs have been studied extensively and modeled using molecular dynamics (MD) simulations. However, it remains difficult to identify the crystal variants in the simulation results, which consist of large numbers of atoms. In the present work, a method is developed to identify the austenite phase and the monoclinic martensite crystal variants in MD results. The transformation matrix of each lattice is calculated to determine the corresponding crystal variant. Evolution of the volume fraction of the crystal variants and the microstructure in Ni-Ti SMAs under thermal and mechanical boundary conditions are examined. The method is validated by comparing MD-simulated interface normals with theoretical solutions. In addition, the results show that, in certain cases, the interatomic potential used in the current study leads to inconsistent monoclinic lattices compared with crystallographic theory. Thus, a specific modification is applied and the applicability of the potential is discussed.

미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰 (Study on the Frictional Characteristics of Micro-particles for Tribological Application)

  • 성인하;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

특정 온도에서 용융 실리카의 확산거동 및 구조분석 (Structural Properties and Diffusion Behaviors of Liquid Silica at Finite Temperatures)

  • 이병민
    • 한국세라믹학회지
    • /
    • 제44권6호
    • /
    • pp.319-324
    • /
    • 2007
  • The structural properties of $SiO_2$ liquid at finite temperatures have been investigated by molecular dynamics (MD) simulations utilizing the Tersoff interatomic potential. During cooling process, the $SiO_2$ liquid structure quenched with a cooling rate of $1.0{\times}10^{11}K/sec$ shows the traditional properties observed in the experiments. The coordination defects of system decrease with decreasing temperature up to 17%. The $SiO_2$ glass quenched up to 1600 K contains defects consisting of the fivefold coordination of Si, and the threefold coordination of O atoms. The calculated diffusion coefficients which are calculated by monitoring. the mean-square displacement of atoms drop to almost zero below 3000 K ($<10^{-6}\;cm^2/sec$) but has a fluctuations at low temperature. The structure properties of $SiO_2$ liquid shows a significant dependence on the temperature during cooling process. Bond-angle distribution at around $120^{\circ}$ originate from the O and Si atoms consisting of the over-coordinated O atoms.

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.