• Title/Summary/Keyword: Interannual Change

Search Result 40, Processing Time 0.026 seconds

Temporal and Spatial Variations of SL/SST in the Korean Peninsula by Remote Sensing (원격탐사를 이용한 한반도 주변해역의 해수면/해수온의 시·공간변동 특성 연구)

  • Oh, Seung-Yeol;Jang, Seon-Woong;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.2
    • /
    • pp.333-345
    • /
    • 2012
  • NOAA/AVHRR, Topex/Poseidon, and Jason-1 data were used to analyze sea surface temperatures and thermal fronts in the North East Asia Seas. Temporal and spatial analyses were based on data from 1993 to 2008. The amplitude and phase for the annual mode on SL and SST were investigated with harmonic analysis. The geographical distribution of amplitudes for comparison of SL and SST are slightly reverse in southwest-northeast tilted direction. The time series analysis conducted on the entire researched area presented consistent pattern. Peak of Sea Level was presented 1~2 months after the peak of the surface sea temperature was shown. This explains that Sea Level change occurs after the generation of surface sea temperature change in sea. The Sobel edge detection method delineated four fronts. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas.

A multi-scale analysis of the interdecadal change in the Madden-Julian Oscillation (MJO의 다중스케일 분석을 통한 수십년 변동성)

  • Lee, Sang-Heon;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2011
  • A new multi-timescale analysis method, Ensemble Empirical Mode Decomposition (EEMD), is used to diagnose the variation of the MJO activity determined by 850hPa and 200hPa zonal winds from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data for the 56-yr period from 1950 to 2005. The results show that MJO activity can be decomposed into 9 quasi-periodic oscillations and a trend. With each level of contribution of the quasi-periodic oscillation discussed, the bi-seasonal oscillation, the interannual oscillation and the trend of the MJO activity are the most prominent features. The trend increases almost linearly, so that prior to around 1978 the activity of the MJO is lower than that during the latter part. This may be related to the tropical sea surface temperature(SST). It is speculated that the interdecadal change in the MJO activity appeared in around 1978 is related to the warmer SST in the equatorial warm pool, especially over the Indian Ocean.

The Climate of Korea in the View of the Climatic Year (연후(年候)에서 본 한국(韓國)의 기후(氣候))

  • Kang, Man-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • The climatic characteristics of Korea are analized with the data observed from 1972 to 1995 in 66 stations, using the climatic year method expressed by the $K{\ddot{o}}ppen's$ system of climatic classification. The climate of Korea is composed of the six climatic year types : Cfa, Cwa, Cwb, Dfa, Dwa and Dwb type. The Cwa and Dwa type occupy 95% occurrence frequency. The Cwa climatic year type predominates in the greater part of the Southern Area, the east slopes of the Taebaek Range and Cheju-do, the Dwa type does in Yongso Area and the northeastern part of Kyonggi Province. and the Cfa type does in Ullung-do. Such dominant climatic year regions become the stable climatic regions, while the regions where the various climatic types appear become the unstable climatic regions which are distributed in the northern part of the Southern Area and in the southern part of the Central Area owing to the shifts of the border between C type and D type. The border between C and D type is located in the Central Inland Area in the first half of the 1990's which the Cwa type predominates most. On the other hand the border is located in the middle part of the Southern Area in the first half of the 1980's which the Dwa type prevails most. Therefore the extents of the climatic year regions vary each year. In the interannual change of the main climatic year types, the Cwa type shows the increasing trend, while the Cfa and Dwa type reflets the decreasing tendency. The extending trend of the Cwa climatic year region appears during the period of the first half of the 1970's and the period between the latter half of the 1980's and the first half of the 1990's centering around the Southern Area. The Dwa climatic year region which was predominant in the Central Area in the first half of the 1980's has been reduced up till the recent years.

  • PDF

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.

Climate Change over Korea and Its Relation to the Forest Fire Occurrence (기후 변화에 따른 한반도 산불 발생의 시공간적 변화 경향)

  • Sung, Mi-Kyung;Lim, Gyu-Ho;Choi, Eun-Ho;Lee, Yun-Young;Won, Myoung-Soo;Koo, Kyo-Sang
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • This study analyzes the climate change in Korea and its impact on the occurrence of forest fire events. The forest fire occurrences in Korea tend to concentrate around large cities. In addition, the spatial distribution of the forest fire occurrence seems to agree with local climate conditions. Though the occurrence of the forest fire shows strong interannual variation, it also exhibits a positive trend. Because the forest fire frequently occurs during early spring, we examined long term climate variability in Korea for the early spring seasons. The climate change in Korea generally has brought warmer, drier, and less precipitable conditions during the early spring. The changes of the atmospheric conditions provide favorable condition for the forest fire. The climate changes in Korea also depict distinct spatial variability according to the atmospheric variables. We compared the regional trend of the fire occurrence with the climate trends. The results show the sharpest growing in the forest fire occurrence over southwest of Korea. This study suggests that the decrease in the precipitation day might affect the sharp increasement of the forest fire occurrence in the southwest of Korea.

THE CASPIAN SEA LEVEL, DYNAMICS, WIND, WAVES AND UPLIFT OF THE EARTH'S CRUST DERIVED FROM SATELLITE ALTIMETRY

  • Lebedev, S.A.;Kostianoy, A.G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.973-976
    • /
    • 2006
  • The oscillations of the Caspian Sea level represent a result of mutually related hydrometeorological processes. The change in the tendency of the mean sea level variations that occurred in the middle 1970s, when the long-term level fall was replaced by its rapid and significant rise, represents an important indicator of the changes in the natural regime of the Caspian Sea. Therefore, sea level monitoring and long-term forecast of the sea level changes represent an extremely important task. The aim of this presentation is to show the experience of application of satellite altimetry methods to the investigation of seasonal and interannual variability of the sea level, wind speed and wave height, water dynamics, as well as of uplift of the Earth’s crust in different parts of the Caspian Sea and Kara-Bogaz-Gol Bay. Special attention is given to estimates of the Volga River runoff derived from satellite altimetry data. The work is based on the 1992-2005 TOPEX/Poseidon (T/P) and Jason-1 (J-1) data sets.

  • PDF

Global, Remote, and Local Effects on the Mediterranean Climate in Present-Day Simulations (현재 기후 모의실험에서 나타나는 지중해의 기후에 대한 전 지구, 원격, 지역 영향들)

  • Kim, Go-Un;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.311-318
    • /
    • 2020
  • Impacts on the atmospheric circulation and ocean system over the Mediterranean during boreal summer are investigated using Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations (from 1911 to 2005). As the climate warms, global and remote effects lead to a strengthening in descending motion, an increase in sea surface temperature (SST) and surface dryness, but a decrease in marine primary production over the Western Mediterranean. The global effect is estimated from interannual variability over the global mean SST and the remote effect is driven by diabatic forcing generated from the South and East Asian summer monsoons. On the other hand, a local contribution leads to the strengthened descending motion and increased surface dryness over the Eastern Mediterranean, whereas the marine primary production over this region tends to increase due to possibly the urban wastewater and sewage. Our result suggests that particular attention needs to be paid to conserve the marine ecosystem over the Mediterranean.

Evaluation of the Total Column Ozone in the Reanalysis Datasets over East Asia (동아시아 지역 오존 전량 재분석 자료의 검증)

  • Han, Bo-Reum;Oh, Jiyoung;Park, Sunmin;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.659-669
    • /
    • 2019
  • This study assesses the quality of the total column ozone (TCO) data from five reanalysis datasets against nine independent observation in East Asia. The assessed datasets are the ECMWF Interim reanalysis (ERAI), Monitoring Atmosphere Composition and Climate reanalysis (MACC), Copernicus Atmosphere Monitoring Service reanalysis (CAMS), the NASA Modern-Era Retrospective analysis for Research and Applications, Version2 (MERRA2), and NCEP Climate Forecast System Reanalysis (CFSR). All datasets reasonably well capture the spatial distribution, annual cycle and interannual variability of TCO in East Asia. In particular, characteristics of TCO according to the latitude difference were similar at all points with a maximum bias of less than about 4%. Among them, CAMS and CFSR show the smallest mean bias and root-mean square error across all nine ground-based observations. This result indicates that while TCO data in modern reanalyses are reasonably good, CAMS and CFSR TCO data are the best for analysing the spatio-temporal variability and change of TCO in East Asia.

Correlation between Impervious Surface Area Rate and Urbanization Indicators at the Si-Gun Level (시군단위의 불투수면적률과 도시화 지표의 상관성 분석)

  • Jang, Min-Won;Kim, Hyeonjoon;Choi, Yoonhee;Kim, Hakkwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.55-67
    • /
    • 2023
  • This study investigated the correlation between impervious surface area rate(ISAR) and various urbanization indicators at the si-gun administrative level. For the years 2017 and 2021, we built correlation matrices to examine the relationships between ISAR and eight urbanization indicators, including total population, working-age population, residential power consumption, non-agricultural power consumption, paved road length, permitted development area, numbers of registered vehicles, and cadastral 'Dae' parcel area. Additionally, K-means clustering was employed to classify the 229 si-guns based on the ISAR change patterns. The analysis revealed a significant positive correlation between ISAR and urbanization indicators for both years studied. However, the interannual comparison showed a noticeably weaker correlation between changes in ISAR and urbanization indicators from 2017 to 2021. The K-means analysis also showed that si-guns with higher ISAR values, typically urban areas, demonstrated a weaker correlation, while the cluster consisting mostly of rural areas with lower ISAR displayed stronger correlations. These results suggested that ISAR should be a significant factor for consideration in sustainable rural planning and development strategies.

Movement of Cold Water Mass in the Northern East China Sea in Summer (하계 동중국해 북부 해역에서 저층 냉수괴의 거동)

  • Jang, Sung-Tae;Lee, Jae-Hak;Kim, Cheol-Ho;Jang, Chan-Joo;Jang, Young-Suk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The Yellow Sea Cold Water (YSCW) is formed by cold and dry wind in the previous winter, and is known to spread southward along the central trough of the Yellow Sea in summer. Water characteristics of the YSCW and its movement in the northern East China Sea (ECS) are investigated by analyzing CTD (conductivity-Temperature-Depth) data collected from summertime hydrographic surveys between 2003 and 2009. By water mass analysis, we newly define the North Western Cold Water (NWCW) as a cold water mass observed in the study area. It is characterized by temperature below $13.2^{\circ}C$, salinity of 32.6~33.7 psu, and density (${\sigma}_t$) of 24.7~25.5. The NWCW appears to flow southward at about a speed less than 2 cm/s according to the geostrophic calculation. The newly defined NWCW shows an interannual variation in the range of temperature and occupied area, which is in close relation with the sea surface temperature (SST) over the Yellow Sea and the East China Sea in the previous winter season. The winter SST is determined by winter air temperature, which shows a high correlation with the winter-mean Arctic Oscillation (AO) index. The negative winter-mean AO causes the low winter SST over the Yellow Sea and the East China Sea, resulting in the summertime expansion and lower temperature of the NWCW in the study area. This study shows a dynamic relation among the winter-mean AO index, SST, and NWCW, which helps to predict the movement of NWCW in the northern ECS in summer.