DOI QR코드

DOI QR Code

현재 기후 모의실험에서 나타나는 지중해의 기후에 대한 전 지구, 원격, 지역 영향들

Global, Remote, and Local Effects on the Mediterranean Climate in Present-Day Simulations

  • 김고운 (부산대학교 지구환경시스템학부 대기환경과학과) ;
  • 서경환 (부산대학교 지구환경시스템학부 대기환경과학과)
  • Kim, Go-Un (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Seo, Kyong-Hwan (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
  • 투고 : 2020.05.17
  • 심사 : 2020.07.09
  • 발행 : 2020.09.30

초록

Impacts on the atmospheric circulation and ocean system over the Mediterranean during boreal summer are investigated using Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations (from 1911 to 2005). As the climate warms, global and remote effects lead to a strengthening in descending motion, an increase in sea surface temperature (SST) and surface dryness, but a decrease in marine primary production over the Western Mediterranean. The global effect is estimated from interannual variability over the global mean SST and the remote effect is driven by diabatic forcing generated from the South and East Asian summer monsoons. On the other hand, a local contribution leads to the strengthened descending motion and increased surface dryness over the Eastern Mediterranean, whereas the marine primary production over this region tends to increase due to possibly the urban wastewater and sewage. Our result suggests that particular attention needs to be paid to conserve the marine ecosystem over the Mediterranean.

키워드

참고문헌

  1. Alessandri, A., and Coauthors, 2014: Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci. Rep., 4, 7211, doi:10.1038/srep07211.
  2. Alpert, P., and Coauthors, 2006: Chapter 2 Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. In P. Lionello et al. Eds., Mediterranean climate variability, vol. 4, Elsevier Science, 149-177.
  3. Anav, A., P. Friedlingstein, M. Kidston, L. Bopp, P. Ciais, P. Cox, C. Jones, M. Jung, R. Myneni, and Z. Zhu, 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Climate, 26, 6801-6843, doi:10.1175/JCLI-D-12-00417.1.
  4. Cherchi, A., H. Annamalai, S. Masina, and A. Navarra, 2014: South Asian summer monsoon and the eastern Mediterranean climate: The monsoon-desert mechanism in CMIP5 simulations. J. Climate, 27, 6877-6903, doi:10.1175/JCLI-D-13-00530.1.
  5. Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. In T. F. Stocker, et al. Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1217-1308.
  6. Colella, S., F. Falcini, E. Rinaldi, M. Sammartino, and R. Santoleri, 2016: Mediterranean ocean colour chlorophyll trends. PLoS One, 11, e0155756, doi:10.1371/journal.pone.0155756.
  7. Doney, S. C., 2006: Oceanography: Plankton in a warmer world. Nature, 444, 695-696, doi:10.1038/444695a.
  8. Durrieu de Madron, X., and Coauthors, 2011: Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean. Prog. Oceanogr., 91, 97-166, doi:10.1016/j.pocean.2011.02.003.
  9. EUMOFA, 2017: Monthly Highlights. No. 8/2017. 24 pp.
  10. Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrel, 2009: The summer North Atlantic Oscillation: past, present, and future. J. Climate, 22, 1082-1103, doi:10.1175/2008JCLI2459.1.
  11. Frolicher, T. L., and C. Laufkotter, 2018: Emerging risks from marine heat waves. Nat. Commun., 9, 650, doi:10.1038/s41467-018-03163-6.
  12. Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734.
  13. Kim, G.-U., K.-H. Seo, and D. Chen, 2019: Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep., 9, 18813, doi:10.1038/s41598-019-55303-7.
  14. Lewandowska, A. M., D. G. Boyce, M. Hofmann, B. Matthiessen, U. Sommer, and B. Worm, 2014: Effects of sea surface warming on marine plankton. Ecol. Lett., 17, 614-623, doi:10.1111/ele.12265.
  15. Ludwig, W., A. F. Bouwman, E. Dumont, and F. Lespinas, 2010: Water and nutrient fluxes from major Mediterranean and Black Sea rivers: Past and future trends and their implications for the basin-scale budgets. Global Biogeochem. Cy., 24, GB0A13, doi:10.1029/2009GB003594.
  16. Mariotti, A., and A. Dell'Aquila, 2012: Decadal climate variability in the Mediterranean region: roles of largescale forcings and regional processes. Clim. Dyn., 38, 1129-1145, doi:10.1007/s00382-011-1056-7.
  17. Mariotti, A., N. Zeng, J.-H. Yoon, V. Artale, A. Navarra, P. Alpert, and L. Z. X. Li, 2008: Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ. Res. Lett., 3, 044001, doi:10.1088/1748-9326/3/4/044001.
  18. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent, 2000: Biodiversity hotspots for conservation priorities. Nature, 403, 853-858, doi:10.1038/35002501.
  19. Nykjaer, L., 2009: Mediterranean Sea surface warming 1985-2006. Clim. Res., 39, 11-17, doi:10.3354/cr00794.
  20. Raicich, F., N. Pinardi, and A. Navarra, 2003: Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean. Int. J. Climatol., 23, 173-186, doi:10.1002/joc.862.
  21. Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc., 122, 1385-1404, doi:10.1002/qj.49712253408.
  22. Sammartino, M., A. Di Cicco, S. Marullo, and R. Santoleri, 2015: Spatio-temporal variability of micro-, nanoand pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci., 11, 759-778, doi:10.5194/os-11-759-2015.
  23. Schar, C., P. L. Vidale, D. Luthi, C. Frei, C. Haberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332-336, doi:10.1038/nature02300.
  24. Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi:10.1029/2012GL052910.
  25. Seager, R., H. Liu, N. Henderson, I. Simpson, C. Kelley, T. Shaw, Y. Kushnir, and M. Ting, 2014: Causes of increasing aridification of the mediterranean region in response to rising greenhouse gases. J. Climate, 27, 4655-4676, doi:10.1175/JCLI-D-13-00446.1.
  26. Seo, K.-H., and J. Ok, 2013: Assessing future changes in the East Asian summer monsoon using CMIP3 models: Results from the best model ensemble. J. Climate, 26, 1807-1817, doi:10.1175/JCLI-D-12-00109.1.
  27. Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662-7675, doi:10.1175/JCLI-D-12-00694.1.
  28. Shaltout, M., and A. Omstedt, 2014: Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia, 56, 411-443, doi:10.5697/oc.56-3.411.
  29. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMSD-11-00094.1.
  30. Tyrlis, E., J. Lelieveld, and B. Steil, 2013: The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim. Dyn., 40, 1103-1123, doi:10.1007/s00382-012-1528-4.
  31. Tzanatos, E., D. E. Raitsos, G. Triantafyllou, S. Somarakis, and A. A. Tsonis, 2014: Indications of a climate effect on Mediterranean fisheries. Clim. Change, 122, 41-54, doi:10.1007/s10584-013-0972-4.
  32. Volosciuk, C., D. Maraun, V. A. Semenov, N. Tilinina, S. K. Gulev, and M. Latif, 2016: Rising mediterranean sea surface temperatures amplify extreme summer precipitation in central Europe. Sci. Rep., 6, 32450, doi:10.1038/srep32450.