• 제목/요약/키워드: Interaction of Flames

검색결과 105건 처리시간 0.017초

희박-과농 메탄 화염의 상호작용에 관한 수치해석적 연구 (A Numerical Study on the Lean-Rich Interaction of Methane/Air Flames)

  • 이승동;정석호
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.377-383
    • /
    • 1996
  • Interaction of flames in a lean-rich concentration field is studied numerically adopting a counterflow as a model problem. Detailed kinetic mechanism is adopted in analyzing the structure of various type of flames which can be found in lean-rich interaction. Flow field is simplified to quasi one-dimensional by using boundary layer approximation and similarity formulation. Triple flames are identified and its structure shows that a diffusion flame is located in the middle of two premixed flames. Such a diffusion flame is formed by $H_2$ and CO generated from the rich premixed flame and $O_2$ leaked from the lean premixed flame. The flame position can be identified either from the hydrogen production rate or the heat release rate. Transition from single diffusion flame to triple flame is observed as degree of premixing is increased.

기체확산 화염간의 상호작용 (The Interaction of Gaseous Diffusion Flames)

  • 김호영;전철균
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.355-365
    • /
    • 1991
  • 본 연구에서는 화염간 상호 작용을 해석함으로써 정의 적용에 있어서의 적절 성과 유용성을 검토 하고 화염간 상호 작용 특성을 밝히기 위하여, 해석의 대상은 화 염간의 상호작용을 명확히 관찰할 수 있는 두 개의 평행한 사각 덕트형 노즐로부터 분 출되는 기체연료에 의해 형성 되는 두 개의 동등한 3차원 제트 난류 확산화염을 택한 다. 2-화염계는 상호작용 화염군의 기본 단위이며, 현재까지 원형제트 화염에 비하 여 3차원제트 화염에 대한 연구는 많지 않은 실정이다. 연구의 방법으로는 이론적 모델링과 수치해석을 통한 모의 실험에 중점을 두고 부분적인 실험으로 타당성을 점검 한다.이는 기존의 연구들이 대부분 실험적인 것들이거나 간단한 해석적 모델을 사 용한 것들이어서 상호 작용하의 화염 특성을 예측할 수 있는 수치 해석적 모델의 개발 이 필요하며, 또한 기존의 연구들이 온도나 성분만을 측정함으로서 유동장에서의 운동 량 전달의 상호작용 특성이 자세히 연구되지 못했으므로, 이를 위해서는 난점이 있는 속도 측정의 실험적 방법보다 수치해석적 접근법이 필요하기 때문이다. 이상과 같이 본연구는 상술한 정의를 적용해 보고 이에따라 화염간 상호작용의 특성을 파악하며 이 를 예측할 수 있는 이론적 모델을 개발하는 것을 목적으로 한다.

메탄-공기/합성가스-공기 예혼합화염의 후류 상호 작용에 대한 연구 (A Study on Downstream Interaction between Methane-air and Syngas-air Premixed Flames)

  • 박정;권오붕;길상인;윤진한
    • 한국연소학회지
    • /
    • 제21권1호
    • /
    • pp.8-17
    • /
    • 2016
  • Downstream interactions between lean premixed flames with mutually different fuels of syngas and $CH_4$ have been numerically investigated particularly on and near lean extinction limits. The interaction characteristics between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames were shown to be quite different from those between the same hydrocarbon flames. The lean extinction boundaries were of slanted shape, thereby implying strong interactions. The weaker flames had negative flame speeds on the upper extinction boundaries, whereas the weaker flame speeds on the lower extinction boundaries were both negative and positive. The results also showed that the flame interaction characteristics did not follow the general tendency with the dependency of Lewis number in downstream interactions between the same hydrocarbon flames. Importance of chemical interaction in flame characteristics is discussed in the downstream interactions between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames.

상호작용하는 대향류 메탄 및 수소 예혼합화염에서 당량비 조건에 따른 상호작용 모드 변화 (Interaction Mode Change According to the Equivalence Ratios in the Interacting Methane and Hydrogen Counterflow Premixed Flames)

  • 박지웅;오창보
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.13-16
    • /
    • 2012
  • The interaction between methane and hydrogen premixed flames with the different equivalence ratio and global strain rate was investigated numerically in one-dimensional counterflow field. The OPPDIF code and GRI-v3.0 were used to simulate the interacting flames. Overall trends in the maximum heat release rates of $CH_4{^-}$ and $H_2$-side flame were examined with the variation of $a_g$. The interaction mode of the flames were classified according to the equivalence ratios and Lewis numbers of each flame and global strain rate.

  • PDF

Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구 (Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow)

  • 천강우;김준홍;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

SNG 연료의 화염구조에 관한 연구 Part I : 화염후류간 상호작용 (A Study on Flame Structure of SNG Fuel Part I : Interaction between Flames Downstream)

  • 심근선;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.53-56
    • /
    • 2015
  • A combined experimental and numerical study has been conducted to investigate the downstream interaction between simulated SNG-air premixed flames in fuel composition of 91% $CH_4$ + 6% $C_3H_8$ + 3% $H_2$. In this study, the effects of fuel molar concentration(lean-rich) and strain rate($a_g$) were major parameters. A main focus is to investigate flames behavior and chemical interaction at flames downstream. The numerical results were calculated by OPPDIF application. The reaction mechanism adopted was USC-II model including C3 reaction.

  • PDF

수소화염과 탄화수소화염의 상호작용에 관한 수치계산 연구 (Numerical Study of Interaction between Hydrogen and Hydrocarbon Flames)

  • 오창보;이의주
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.12-17
    • /
    • 2010
  • Numerical simulations were performed for the prediction of the flame structure during the interaction between hydrogen and hydrocarbon flames. A counterflow flow geometry was introduced to establish the interacting two flames. Methane was used as a representative hydrocarbon fuel in this study. A well-known numerical code for the counterflow flame, OPPDIF, was used for the simulations. The detailed chemistry was adopted to predict the flame structure reasonably. The interaction of two one-dimensional premixed flames established in counterflow burner was investigated with the global strain rate and velocity ratio. It was found that the maximum temperature located near the methane flame surface while the heat release rate of methane was lower than hydrogen flame. The flame thickness become narrow with increasing the velocity ratio while the global strain rate was fixed. The local strain rate and heat release rate at the methane flame surface were correlated with the global strain rate, while those at the hydrogen flame were not correlated with the global strain rate. However, the maximum temperature of the interacting flames was correlated with the global strain rate.

상호작용을 하는 희박-희박 예혼합화염의 소화특성에 관한 연구 (On the Extinction Characteristics of the Interacting Lean-Lean Premixed Flames)

  • 정석호;김종수
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.232-240
    • /
    • 1986
  • 본 연구에서는 대향류 유동장에서 두 예혼합화염의 후류 상호작용을 Fig.1 과 같은 계를 이용하여 일반적인 Lewis수에 대하여 접합 점근 전개 방법으로 해석하 여, 강한 상호작용을 나타내는 구간의 변화가 확산선호도의 영향임을 규명하고, 화염 스트레치가 상호 작용하는 예혼합화염의 소화특성에 미치는 영향을 파악하였다.

석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석 (Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames)

  • 이정원;강성모;김용모;주용진
    • 한국연소학회지
    • /
    • 제14권2호
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF

H2-공기와 CO-공기의 예혼합화염의 화염소화에 있어서 화학적 상호작용의 효과 (Effect of Chemical Interaction on Flame Extinction in Interacting H2-air and CO-air Premixed Flames)

  • 정승욱;박정;권오붕;길상인;윤진한
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.44-52
    • /
    • 2013
  • Important role of chemical interaction in flame extinction was numerically investigated in downstream interaction among lean(rich) and lean(rich) premixed as well as partially premixed $H_2$-air and CO-air flames. The strain rate varied from 30 to $5917s^{-1}$ until interacting flame could not be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames were survived only within two islands in the flame stability map where partially premixed mixture consisted of rich $H_2$-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. Appreciable amount of hydrogen in the side of lean $H_2$-air flame also oxidized the CO penetrated from CO-air flame, and this reduced flame speed of the $H_2$-air flame, leading to flame extinction. At extremely high strain rates, interacting flames were survived only by a partially premixed flame such that it consisted of a very rich $H_2$-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker $H_2$-air and CO-air flames were parasite on the stronger diffusion flame such that it could lead to flame extinction in the situation of weakening the stronger diffusion flame. Particular concerns are focused on important role of chemical interaction in flame extinction was also discussed in detail.