Browse > Article
http://dx.doi.org/10.15231/jksc.2016.21.1.008

A Study on Downstream Interaction between Methane-air and Syngas-air Premixed Flames  

Park, Jeong (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.)
Kwon, Oh Boong (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.)
Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Publication Information
Journal of the Korean Society of Combustion / v.21, no.1, 2016 , pp. 8-17 More about this Journal
Abstract
Downstream interactions between lean premixed flames with mutually different fuels of syngas and $CH_4$ have been numerically investigated particularly on and near lean extinction limits. The interaction characteristics between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames were shown to be quite different from those between the same hydrocarbon flames. The lean extinction boundaries were of slanted shape, thereby implying strong interactions. The weaker flames had negative flame speeds on the upper extinction boundaries, whereas the weaker flame speeds on the lower extinction boundaries were both negative and positive. The results also showed that the flame interaction characteristics did not follow the general tendency with the dependency of Lewis number in downstream interactions between the same hydrocarbon flames. Importance of chemical interaction in flame characteristics is discussed in the downstream interactions between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames.
Keywords
Difficient reactant & effective Lewis numbers; Extinction boundary; Radical sharing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Peters, Laminar diffusion flamelet models in nonpremixed turbulent combustion, Prog. Energy Combust. Sci., 10 (1984) 319-339.   DOI
2 N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst., 21 (1986) 1231- 1250.
3 S. Ishizuka, C.K. Law, An experimental study on extinction and stability of stretched premixed flames, Proc. Combust. Inst., 19 (1982) 327-335.
4 S.H. Sohrab, Z.Y. Ye, C.K. Law, An experimental investigation on flame interaction and the existence of negative flame speeds, Proc. Combust. Inst., 20 (1984) 1957-1965.
5 S.H. Sohrab, Z.Y. Ye, C.K. Law, Theory of interactive combustion of counterflow premixed flames, Combust. Sci. Technol., 45 (1986) 27.   DOI
6 S.H. Chung, J.S. Kim JS, C.K. Law, Extinction of interacting premixed flames: theory and experimental comparisons. Proc. Combust. Inst., 21 (1986) 1845-1851.
7 J.S. Ha, C.W. Moon, J. Park, J.S. Kim, J.H. Yun, S.I. Keel, A study on flame interaction between methane-air and nitrogen -diluted hydrogen-air premixed flames, Int. J. Hydrogen Energy, 35 (2010) 6992-7001.   DOI
8 C.G. Fotache, Y. Tan, C.J. Sung, C.K. Law, Ignition of $CO/H_2/N_2$ versus heated air in counterflow: experimental and modeling results, Combust. Flame, 120 (2000) 417-426.   DOI
9 H. Sun, S.I. Yang, G. Jomaas, C.K. Law, Highpressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc. Combust. Inst., 31 (2007) 439-446.   DOI
10 S.G. Davis, A.V. Joshi, H. Wang, F. Egolfopoulos, An optimized kinetic model of $H_2/CO$ combustion. Proc. Combust. Inst., 30 (2005) 1283-1292.
11 J. Park J, D.S. Bae, M.S. Cha, J.H. Yun, S.I. Keel, H.C. Cho, K.T. Kim, Ha JS. Flame characteristics in $H_2/CO$ synthetic gas diffusion flame diluted with $CO_2$: effects of flame radiation and mixture composition. Int. J. Hydrogen Energy, 33 (2008) 7256-7264.   DOI
12 G.P. Smith GP, D.M. Golden, N.W. Frenklach, M.B. Eiteneer, M. Goldenberg, C.T. Bowman, R. K. Hanson, S. Dong, W.C. Gardiner, Jr. V.V. Lissianski, Z. Qin, Available from: http://www.me.Berkeley.edu/gri_mech.
13 R. Addabbo, J.K. Bechtold, M. Matalon, Wrinkling of spherically expanding flames, Proc. Combust. Inst., 29 (2002) 1527-35.
14 J. Natarajan, T. Lieuwen, J. Seitzman, Laminar flame speeds of $H_2/CO$ mixture effects of $CO_2$ dilution, preheat temperature, and pressure. Combust. Flame, 151 (2007) 104-109.   DOI
15 C.M. Vagelopoupos, F.N. Egolfpoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air, Proc. Combust. Inst., 25 (1994) 1317-1323.
16 I.C. Mclean, D.B. Smith, S.C. Taylor, The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction, Proc. Combust. Inst., 25 (1994) 749-757.
17 M.J. Brown, I.C. Mclean, D.B. Smith, S.C. Taylor, Markstein lengths of $CO/H_2/air$ flames using expanding spherical flames, Proc. Combust. Inst., 26 (1996) 875-881.
18 T.M. Vu, J. Park, O.B. Kwon, J.S. Kim, Effects of hydrocarbon addition on cellular instabilities in expanding syngaseair spherical premixed flames, Int J Hydrogen Energy, 34 (2009) 6961-6969.   DOI
19 S.G. Davis, A.V. Joshi, H. Wang, F. Egolfopoulos, An optimized kinetic model of $H_2/CO$ combustion, Proc. Combust. Inst., 30 (2005) 1283-1292.   DOI
20 G. Yu, C.K. Law, C.K. Wu, Laminar flame speeds of hydrocarbon-air mixtures with hydrogen addition, Combust. Flame, 63 (1986) 339-347.   DOI
21 P. Dagat, A. Nicolle, Experimental and detailed kinetic modeling of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges, Proc. Combust. Inst., 30 (2005) 2631-2638.
22 V. Di Sarli, A. Di Benedetto, Laminar burning velocity of hydrogenemethane/air premixed flames. Int. J. Hydrogen Energy, 32 (2007) 637-646.   DOI
23 C.M. Vagelopoupos, F.N. Egolfpoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air, Proc. Combust. Inst., 25 (1994) 1317-1323.
24 J.S. Kim, J. Park, O.B. Kwon, E.J. Lee, J.H. Yun, S.I. Keel, Preferential diffusion effects in opposedflow diffusion flame with blended fuels of $CH_4$ and $H_2$, Int. J. Hydrogen Energy, 33 (2008) 842- 850.
25 J. Wang, Z. Huang, C. Tang, H. Miao, X. Wang, Numerical study of the effects of hydrogen addition on methane-air mixtures combustion, Int. J. Hydrogen Energy, 34 (2009) 1084-1096.   DOI
26 E. Hu, Z. Huang, J. He, C. Jin, J. Zheng, Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames, Int. J. Hydrogen Energy, 34 (2009) 4876- 4888.   DOI
27 R.J Kee, J.A. Miller, G.H. Evans, G. Dixon-Lewis, A computational model of the structure and extinction of strained, opposed flow, premixed methaneair flame. Proc. Combust. Inst., 22 (1988) 1479- 1494.
28 A.E. Lutz, R.J. KeeJ, J.F. Grcar, F.M. Rupley, A fortran program for computing opposed-flow diffusion flames. Sandia National Laboratories Report, 1997, SAND 96-8243.
29 Y. Ju, H. Guo, K. Maruta, F. Liu, On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames. J. Fluid Mech., 342 (1997) 315.   DOI
30 R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics. Sandia National Laboratories Report, 1989, SAND 89-8009B.
31 R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A fortran computer code package for the evaluation of gas phase multi-component transport. Sandia National Laboratories Report, 1994, SAND 86-8246.