• Title/Summary/Keyword: Interaction effect of pile

Search Result 106, Processing Time 0.025 seconds

Analysis Method of Passive Piles considering group effect (군말뚝효과를 고려한 수동말뚝의 해석기법)

  • 정상섬;원진오;김병철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.151-158
    • /
    • 2000
  • The lateral deformation of one row pile groups was investigated based on analytical study and a numerical analysis. The emphasis was on quantifing the load transfer of pile groups subjected to lateral soil movement. An analytical method to consider pile-soil interaction in weathered soil was developed using load-transfer curve methods. Through the comparative study, it is found that the prediction by present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가)

  • Tran, Nghiem Xuan;Lee, Jin-sun;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2017
  • Aseismic designs of pile-supported wharves are commonly performed utilizing simplified dynamic analyses, such as multi-mode spectral analyses. Simplified analyses can be useful for evaluating the limit state of structures. However, several pile-supported wharves, that have been damaged during past earthquakes, have shown that soil deformation and soil-pile dynamic interaction significantly affect the entire behavior of structures. Such behavior can be captured by performing nonlinear effective stress analyses, which can properly consider the dynamic interactions among the soil-pile-structure. The present study attempts to investigate the earthquake performance of a pile-supported wharf utilizing a three-dimensional numerical method. The damaged pile-supported wharf at the Kobe Port during the Hyogo-ken Nambu earthquake (1995) is selected to verify the applicability of the numerical modeling. Analysis results showed a suitable agreement with the observations on the damaged wharf, and the significant effect of excess pore pressure development and pile-soil dynamic interaction on the seismic performance of the wharf.

Vertical Interaction Factors of Pile Groups due to Downdrag (Downdrag에 의한 군말뚝의 상호작용계수)

  • Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.343-354
    • /
    • 1994
  • The group effect which causes different downdrag distribution in individual piles within the group was investigated by using a numerical analysis and an analytical study. The interaction factors due to group spacing and total number of piles in a group were estimated by using a three dimensional non-linear finite element approach. Based on the results obtained, it is shown that the interaction factors of pile groups varies remarkably according to the group spacing, a major influencing parameter for the group effect. Also the downdrag prediction by the proposed method was compared with the other analytical methods through an example of calculations.

  • PDF

Prediction of Pile-Driving Resistance by the Wave Equation and Residual Stress (파동방정식 및 잔류응력에 의한 항타지대력 추정)

  • 황정규
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.15-26
    • /
    • 1986
  • A great number of different pile-driving formulas are widely used to determine the load-carr-ying capacity during driving. However, engineers have been unable to agree on any particular pile.driving formula because the mechanisms of pile driving action which involves many complications such as hammer-pile-soil interaction could not be solved completely in any practical manner. This paper is presented for the purpose of giving field engineers a reliable analytical procedures for the prediction of pile.driving resistance without resort to electronic computers based on the theory of longitudinal wave transmission in conjunction with the wave equation and on the consideration of the effect of residual stresses induced by reversed friction in pile.

  • PDF

Group Effects in Pile Group under Lateral Loading (수평력을 받는 군말뚝에서의 말뚝의 상호작용)

  • Ahn Kwang Kuk;Kim Hong Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.47-55
    • /
    • 2005
  • This paper describes the results for a numerical analysis of'single piles and pile oops in clayey soils subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single piles, pile diameter (1.0 m, 0.5 m), pile length (7.0 m, 10.0 m), and pile groups. The 1$\times$3 pile group was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles, the effects of lateral stresses in front of and on the sides of the piles, and the effect of a cap on the lateral resistance of the leading pile. The soil was modeled using Cam-clay constitutive relationship and the pile was considered as a elastic circular concrete pile. The results show that the size of the cap influences lateral capacity of sin pile. The results also show in pile groups, the pile-soil-pile interaction and the cap effect the resistance in the leading pile, and the p-multiplier for the leading pile of greater than 1.0 was able to be obtained.

Interaction Factors of One-Row Pile Groups Subjected to Lateral Soil Movements (측방 유동을 받는 일렬 군말뚝의 상호 작용 계수)

  • Jeong, Snag-Seom;Kim, Byung-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2000
  • 측발유동을 받는 일렬 군말뚝의 그룹효과를 파악하이 위해 3차원 유한요소해석을 수행하였다. 국내의 대표적인 화강풍화토 지반에 선단지지된 말뚝을 대상으로 측방으로 지반변위 발생시 말뚝 두부조건과 중심간격(2.5D, 5.0D, 7.0D, 단독말뚝) 및 말뚝주면의 접촉효과를 고려한 군말뚝의 상호작용계수를 산정하였다. 본 연구 결과, 단독말뚝과 비교하여 군말뚝의 간격이 좁아짐에 따라 상호작용계수는 현저하게 감소하였으며 말뚝 두부조건이 회전구속, 힌지,자유단의 순으로 감소정도가 크게 나타났다. 이는 실내모형실험을 통해 산정된 상호작용계수와도 비교적 잘 일치함을 보였다.

  • PDF

Response of passively loaded pile groups - an experimental study

  • Al-abboodi, Ihsan;Sabbagh, Tahsin Toma;Al-salih, Osamah
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.333-343
    • /
    • 2020
  • Preventing or reducing the damage impact of lateral soil movements on piled foundations is highly dependent on understanding the behavior of passive piles. For this reason, a detailed experimental study is carried out, aimed to examine the influence of soil density, the depth of moving layer and pile spacing on the behavior of a 2×2 free-standing pile group subjected to a uniform profile of lateral soil movement. Results from 8 model tests comprise bending moment, shear force, soil reaction and deformations measured along the pile shaft using strain gauges and others probing tools were performed. It is found that soil density and the depth of moving layer have an opposite impact regarding the ultimate response of piles. A pile group embedded in dense sand requires less soil displacement to reach the ultimate soil reaction compared to those embedded in medium and loose sands. On the other hand, the larger the moving depth, the larger amount of lateral soil movement needs to develop the pile group its ultimate deformations. Furthermore, the group factor and the effect of pile spacing were highly related to the soil-structure interaction resulted from the transferring process of forces between pile rows with the existing of the rigid pile cap.

Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile interaction to Evaluate Resonant Avoidance Frequency (지반조건 상호작용을 고려한 풍력발전타워의 공진회피 진동수 산정을 위한 고유진동수 해석 연구)

  • Kim, Pyoung-Hwa;Kang, Sung-Yong;Lee, Yun-Woo;Kang, Young-jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.734-742
    • /
    • 2016
  • Global warming and the depletion of fossil fuels have been caused by decades of reckless development. Wind energy is one form of renewable energy and is considered a future energy source. The wind tower is designed with a fundamental frequency in the soft-stiff design between the 1P and 3P range to avoid resonance. Usually, to perform natural frequency analysis of a wind tower, the boundary condition is set to the Fixed-End, and soil-pile interaction is not considered. In this study, consideration of the effect of soil-pile interaction on the wind tower was included and the difference in the natural frequency was studied. The fixed boundary condition was not affected by the soil condition and depth of the pile and the coupled spring boundary condition was unaffected by the depth of pile but affected by the depth of the pile, and the Winkler spring boundary condition is affected by both the soil condition and the depth of the pile. Therefore, the coupled spring boundary condition should be used in shallow depth soil conditions because the soil condition does not take the shallow depth soil into consideration.

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.