• Title/Summary/Keyword: Interaction Model

Search Result 5,266, Processing Time 0.027 seconds

A study of tunnel concrete lining design using the ground-lining interaction model with the interface element (계면요소를 이용한 지반-라이닝 상호작용 모델에 의한 터널 콘크리트 라이닝 연구)

  • Huh, Do-hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.575-586
    • /
    • 2015
  • In NATM tunnel, the Ground-Lining Interaction model(GLI model) had been proposed a one of the numerical analysis as the ground load estimation method of the concrete lining. But this model was not applied with the interface mechanism between the ground and the support member or concrete lining. Therefor in this study, it is implemented as a model for closer than actual states that the interface element applied to the existing GLI model. And the modified GLI formula is proposed with the ground load estimation that is from the numerical results for each ground and rock cover conditions. Based on the numerical results, the ground load acting on concrete lining is reduced to ave. 88~106% in case of IV ground condition and ave. 47~57% in case of weathered soil condition comparing with the existing GLI model. It can be anticipated that the results obtained from this study can be applied to an estimation of the ground load on the concrete lining modeled like as real states, consistent and economical design.

Development of an E-book Design Model for Reinforcing Interaction among Learners (학습자간 상호작용을 강화한 전자책 설계 모형 개발)

  • Kim, Hoon-Yeung;Jun, Woo-Chun
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.1
    • /
    • pp.15-26
    • /
    • 2005
  • Recently, interests on e-book (electronic-book) have been increasing since e-book can provide many benefits than traditional books can do. Especially, e-book can be attractive for elementary school students due to its interaction provided by various multimedia tools. However, despite the fact that the numbers of elementary school students using e-book have been increasing, researches on e-book have not made a significant progress. Also since most researches on e-book have been concentrating on fairy tale books without considering interaction, the true virtue of e-book has not been maximized. Taking this into account, this study is intended to suggest an e-book design model for elementary school students with interaction among learners reinforced. In this study, first, existing e-book design models are analyzed in terms of interaction. Based on this analysis, an e-book design model is designed and developed. The proposed model can help learners interact within their learning levels, support with many functions such as interchangeable help function, various search instruments, previews, messenger functions, and provide a book-like environment where learners themselves can take initiative in learning.

  • PDF

Ultimate section capacity of steel thin-walled I-section beam-columns

  • Salem, Adel Helmy;Sayed-Ahmed, Ezzeldin Yazeed;El-Serwi, Ahmed Abdelsalam;Korashy, Mohamed Mostafa
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.367-384
    • /
    • 2004
  • A numerical model based on the finite element technique is adopted to investigate the behavior and strength of thin-walled I-section beam-columns. The model considers both the material and geometric nonlinearities. The model results were first verified against some of the currently available experimental results. A parametric study was then performed using the numerical model and interaction diagrams for the investigated beam-columns have been presented. The effects of the web depth-to-thickness ratio, flange outstand-to-thickness ratio and bending moment-to-normal force ratio on the ultimate strength of thin-walled I-section beam-columns were scrutinized. The interaction equations adopted for beam columns design by the NAS (North American Specifications for the design of cold formed steel structural members) have been critically reviewed. An equation for the buckling coefficient which considers the interaction between local buckling of the flange and the web of a thin-walled I-section beam-column has been proposed.

Numerical Simulation of Soil-Structure Interaction in Centrifuge Shaking Table System (지반-구조물 상호작용 원심모형시험에 대한 수치해석)

  • Kim, Dong-Kwan;Park, Hong-Gun;Kim, Dong-Soo;Lee, Sei-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.201-204
    • /
    • 2010
  • Earthquake load to design a structure has been calculated from a fixed base SDOF model using amplified surface accelerations along soft soil layers. But the method dose not consider a soil-structure interaction. Centrifugal experiments that were consisted of soil, a shallow foundation and a structure were performed to find the effects of soil-structure interaction. The experiments showed that mass and stiffness of the foundation affected a response of the structure and nonlinear behavior of soil near the foundation. And a rocking displacement caused by overturning moment affected the response and increases a damping effect. In this study, the centrifugal experiment was simulated as a two dimensional finite element model. The finite element model was used for nonlinear time domain analysis of the OpenSees program. The numerical model accurately evaluated the behaviors of soil and the foundation, but the rocking effect and the behavior of structure were not described.

  • PDF

A study of wind turbine power generation and turbine/tower interaction using large eddy simulation

  • Howard, R.J.A.;Pereira, J.C.F.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.95-108
    • /
    • 2006
  • Wind turbines are highly complex structures for numerical flow simulation. They normally comprise of a turbine mounted on a tower thus the movement of the turbine blades and the blade/tower interaction must be captured. In addition the ground effect should also be included. There are many more important features of wind turbines and it is difficult to include all of them. A simplified set of features is chosen here for both the turbine and the tower to show how the method can begin to identify the main points connected with wind turbine wake generation and tip vortex tower interaction. An approach to modelling the rotating blades of a turbine is proposed here. The model uses point forces based on blade element theory to model the blades and takes into account their time dependent motion. This means that local instantaneous velocities can be used as a basis for the blade element theory. The model is incorporated into a large eddy simulation code and, although many important features are left out of the model, the velocity/power performance relation is generally of the correct order of magnitude. Suggested improvements to the method are discussed.

Design and Implementation of a Learner-Tutor Interaction Model in a Virtual Education System (가상교육 시스템에서 학습자-튜터간 상호작용 모형 설계 및 구현)

  • Jeong, Eun-Seon;Song, Hee-Heon;Kang, Oh-Han
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.589-594
    • /
    • 2003
  • In this paper, we exmined the effect of leaner-tutor interaction model implemented in a Web-based virtual education system. Also, we proposed a new tutor model as a strategy for solving problems found in learner-tutor intraction in Web-based virtual education. Then, based on the results of previous research, we derived the roles of the tutor, and using the roles, modeled components of interaction between the tutor based on existing Web-based virtual education systems to demonstrate the effect. The results showed that the proposed model is efficient for improving the learners' achievements and interactive activities.

An educational tool for regression models with dummy variables using Excel VBA (엑셀 VBA을 이용한 가변수 회귀모형 교육도구 개발)

  • Choi, Hyun Seok;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.593-601
    • /
    • 2013
  • We often need to include categorial variables as explanatory variables in regression models. The categorial variables in regression models can be quantified through dummy variables. In this study, we provide an education tool using Excel VBA for displaying regression lines along with test results for regression models with a continuous explanatory variable and one or two categorical explanatory variables. The regression lines with test results are provided step by step for the model(s) with interaction(s), the model(s) without interaction(s) but with dummy variables, and the model without dummy variable(s). With this tool, we can easily understand the meaning of dummy variables and interaction effect through graphics and further decide which model is more suited to the data on hand.

Development of Three-dimensional Chemotaxis Model for a Single Crawling Cell, Considering the Interaction between the Cell and Substrate (세포와 흡착면간의 영향을 고려한 흡착형 세포의 3 차원 동적 해석 모델 개발)

  • Song, Ji-Hwan;Kim, Dong-Choul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1355-1360
    • /
    • 2011
  • The interaction between the cell and the substrate is the most prominent feature affecting the migration of a crawling cell. This paper proposes a three-dimensional dynamic model using the diffuse interface description that reveals the effects of the interaction between a single crawling cell and the substrate during chemotactic migration. To illustrate the effects of interaction between the cell and the substrate, we consider the interfacial energy between the coexistent materials. Multiple mechanisms including the interface energy, chemotaxis effect, and diffusion, are addressed by employing a diffuse interface model.

Examination of a Voice Interaction Model for Smart TV through Conversation Patterns (대화 패턴 연구를 통한 스마트TV 음성 상호작용 모델의 탐구)

  • Choi, Jinhae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.96-104
    • /
    • 2017
  • As new smart devices are evolved into the intelligent agent who can reflect user intention and use context, user experience design for easy and convenient usability becomes a core competitive edge. Under the assumption that human centered natural interaction is necessary for the optimal smart TV experience, this study explores the types of voice interaction which are peculiar to TV watching context. In order to build a model for the users to naturally interact with Smart TV, conversation patterns were collected by requesting key features of Smart TV to intelligent agent. Collected sentences were applied to CfA model and classified by responses to activate features. The classified conversation patterns were divided into feature activation and information search. This study has identified that CfC1 occurred when voice interaction between Smart TV and users was vague and CfC2 occurred when the requests were complex or conditional. In conclusion, Simple Request Type is the most efficient model and voice interaction is more appropriate to use to clarify users' vague requests.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.