• 제목/요약/키워드: Interaction Forces

검색결과 701건 처리시간 0.026초

정상인의 기립 동작중의 대퇴 및 족부 반력의 비대칭율 (Asymmetry of The Reaction Forces on Thighs and Feet During Sit-to-Stand Movement in Normal Subjects)

  • 정홍영;김지원;권유리;서보경;엄광문;김경섭;이정환
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권4호
    • /
    • pp.197-203
    • /
    • 2013
  • The purpose of this study was to analyze the asymmetry of the reaction forces on lower limbs between dominant and nondominant sides during sit-to-stand movement in normal subjects. Fourteen normal subjects ($22.6{\pm}2.3yrs$, all men) participated in this study. To measure the reaction forces during sit-to-stand movement, two force plates were mounted on the ground and one dual top force plate was mounted on a chair. Five events(movement onset, max thigh reaction force, transition, max hip angle, seat off) were determined from the reaction force and joint angle trajectories. For each of thigh, foot, and total reaction forces, two-way ANOVA was performed with the events and sides as factors. Also investigated was the leg asymmetry expressed as the ratio of the reaction forces of dominant and nondominant sides. The significance of asymmetry was investigated and two-way ANOVA was performed with the events and body parts(foot, thigh and total) as factors. Thigh reaction force and total reaction force showed interaction of events and leg sides(p < 0.01). Post-hoc comparisons showed they were different between sides at the latter stage(transition, max hip angle, and seat off events) (p < 0.01). Asymmetry was also significant at the latter stage(transition, max hip angle, and seat off events) (p < 0.01). Interaction of events and body parts on asymmetry was significant(p < 0.01) and asymmetry was greater in thigh reaction forces than total and foot reaction forces at the events of the latter stage(p < 0.01). The results suggest that asymmetry exist in normal subject and should be fully considered when investigating sit-to-stand strategy of patients.

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

Experimental study on the interaction force between a permanent magnet and a superconducting roll stack

  • Wenxin Li;Tianhui Yang;Ying Xin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권1호
    • /
    • pp.11-15
    • /
    • 2023
  • In recent years, the interaction force between a permanent magnet and a closed superconductor coil has been gradually investigated in depth. The principle and application potential of an energy storage/convertor composed of a magnet and a closed superconducting coil have been proved. However, the study on the force between a magnet and a non-closed superconducting coil (superconducting roll stack) has hardly been reported in previous literature. The behavior of this kind of interaction and its influence to the interaction force between a permanent and a closed superconducting coil are also still unclear. In this paper, first we investigated the interaction force between a magnet and a superconducting roll stack. Then, a series of experiments were designed and conducted to clarify the factors affected the interaction force, including the geometrical parameters of the superconducting roll stack and the magnetic field density at the roll stack. Moreover, the comparison of the interaction forces between the magnet and roll stack or a closed coil was also introduced.

고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석 (Analysis of Rail Stress on Diversity of Railway Bridge Sustem)

  • 강재윤;김병석;곽종원;진원종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

응집의 이론 (I) - 수리동역학과 입자간 작용력을 고려한 응집의 모델 - (Theory of Coagulation(I) Coagulation Theory Including Hydrodynamics and Interparticle Forces)

  • 한무영
    • 상하수도학회지
    • /
    • 제9권3호
    • /
    • pp.65-77
    • /
    • 1995
  • The kinetics of flocculation of heterodisperse suspension like those in water treatment plants and natural water system are usually described by the Smoluchowski equation, which incorporates collision frequency functions for particle collisions by Brownian motion, fluid shear, and differential sedimentation. These collisionfrequeney functions have been based on a rectilinear view of collisions, i.e., one that ignores short-range forces and changes in fluid motion as particles approach one another. In this research, a curvilinear approach, i.e., one that accounts for hydrodynamic forces and particle interaction in the collision of two different size particles is developed. Collision efficiency factors of each mechanism can be calculated by trajectory analysis (fluid shear and differential sedimentation) or the solution of diffusion equation (Brownian motion). The results are presented as a set of corrections to the rectilinear collision frequency functions for each mechanism.

  • PDF

4절 메카니즘을 이용한 준정적 포복 시스템에 관한 연구 (Study on quasi-static crawling system using a four bar mechanism)

  • 전용호;송낙윤;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.924-927
    • /
    • 1996
  • In this work, we investigate the quasi-static crawling of the four-bar mechanism. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpuse, we introduce the concept of imaginary joints to find these forces. Therefore, we are able to treat the closed mechanism as a serial one. Also, sliding conditions of the mechanism in quasi-static equilibrium are examined. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism but with a fixed ground friction are investigated.

  • PDF

4절 메커니즘을 이용한 준정적 포복 시스템 (Quasi-Static Crawling System Using a Four Bar Mechanism)

  • 김해수;김민건;임남식;김희국;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.226-232
    • /
    • 2002
  • In this work, the quasi-static crawling of the four-bar mechanism is investigated. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpose, we introduce the concept of imaginary joints to find these forces and treat the closed mechanism as a serial one. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism on a flat ground with uniform friction coefficient, based on sliding conditions of the mechanism in quasi-static equilibrium, are investigated.

규칙파중 항력을 고려한 TLP의 동적응답해석 (A Dynamic Response Analysis of Tension Leg Platforms Including Drag Forces in Regular Waves)

  • 하영록
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.229-237
    • /
    • 2008
  • For predicting the motion and structural responses of tension leg platforms(TLPs) in regular waves, a numerical scheme is introduced. The numerical approach in this paper is based on a combination of the three dimensional source distribution method and the finite element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. The drag forces on the submerged slender members, which are proportional to the square of relative velocity, are newly included in order to estimate the responses of members with better accuracy. Comparisons with other's results verifies the works in this paper.

장경간 철도 교량에 적용된 슬라이딩 궤도와 레일신축이음장치의 궤도-교량 상호작용 비교 (Comparative Analysis of Track-Bridge Interaction of Sliding Slab Track and Rail Expansion Joint for Long-Span Railway Bridge)

  • 이경찬;장승엽;이정휘;최현성
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.169-177
    • /
    • 2016
  • 슬라이딩 궤도는 콘크리트 궤도와 교량 바닥판 사이에 저마찰 슬라이드층을 두어 레일신축이음장치와 같은 특수 장치를 적용하지 않고도 궤도-교량 상호작용 효과를 효과적으로 저감시킬 수 있는 새로운 궤도 시스템으로 개발되고 있다. 이 논문에서는 장경간 교량에 슬라이딩 궤도와 레일신축이음장치를 각각 적용한 경우에 대하여 궤도-교량 상호작용해석을 수행하고 그 결과를 비교 검토하였다. 대상교량은 상호작용 효과를 극대화하기 위하여 9경간 연속 PSC교와 2경간 연속 강합성교를 포함하며, 총 연장 1,205m, 최대 고정지점간 거리 825m인 장경간 교량을 선정하였다. 해석결과 슬라이딩 궤도는 레일신축이음장치를 적용한 경우보다 레일 부가 축력이 더 작은 것은 물론, 지점부에 재하되는 수평 반력 또한 작게 나타나 궤도-교량 상호작용 저감 효과가 뛰어난 것으로 확인되었다. 반면 슬라이딩 궤도는 온도하중에 의해 높은 슬래브 축력이 발생되므로, 궤도 설계 시 슬래브 축력에 대한 단면 설계에 주의를 기울일 필요가 있다.