• Title/Summary/Keyword: Interaction Forces

Search Result 701, Processing Time 0.028 seconds

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

Haptic Display in the Virtual Cooperative Workspace (가상협동공간에서의 Haptic Display)

  • 류성모;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.284-289
    • /
    • 1995
  • This paper presents a haptic display of a cooperative work between the networked multiple users. Excluding the possibility of large timedelay among the users, it is presented the way of configuring individual haptic display systems including the computation of interaction forces, joint driving forces of haptic devices and simulation of the virtual objects. A haptic display system is developed consisting of two haptic display devices operated by two remote users and experimental results to show the validity of the proposed method are also presented.

  • PDF

The Hydrodynamic Interaction Effects between Two Barges on the Motion Responses (상호작용을 고려한 두 바아지의 운동응답)

  • S.P.,Ann;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-34
    • /
    • 1987
  • In this paper, a three dimensional singularity distribution method is applied to investigate the hydrodynamic interactions between two barges floating on a free surface of a deep water. The results show that the hydrodynamic interaction forces are important in the calculation responses of two barges floating in each other's vicinity. Furthermore the trends of hydrodynamic forces due to the motion of body itself are different from those of a single barged, and the motions of the seaward barge can sometimes exceed those of the seaward barged.

  • PDF

enerator During the State of Torsional Interaction (비틀림 상오작용 상태에 있는 터어보 발전기의 전기적 특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.10-17
    • /
    • 1988
  • The torsional resonance of the generator shaft system has the possibility of inducing voltages across the stator winding because it is a carrier with the field excitation. And these torsional induced stator currents inducs the eddy current in the rotor. This paper describes the eddy current based on the double Fourier series method. The forces generating during the torsional interaction are computed using the Maxwell's magnetic stress tensor for each of the Fouriercomponennts. And then, these forces of the Fourier components are evaluated by the Parseval's theorem.

  • PDF

An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction (지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구)

  • Oh, Hyeon-Jun;Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.

An Experimental Study on Ship-Bank Hydrodynamic Interaction Forces (선박에 작용하는 측벽영향에 관한 실험적 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.251-256
    • /
    • 2013
  • This paper is mainly concerned with the ship-bank interaction by model test. The experiments for the characteristics of hydrodynamic interaction forces and moments between vessel and bank with a mound were carried out in the seakeeping and maneuvering basin. A series of tests were carried out with ship model in parallel course along a vertical sidewall with a mound with varying lateral spacing between model ship and sidewall, length of sidewall and water depth. From the experimental results, it indicated that the hydrodynamic interaction effects increase as length of sidewall with a mound increases. Furthermore, for lateral spacing less than about 0.2L between vessel and bank, it can be concluded that the bank effects increase largely as the lateral spacing between vessel and bank decreases. However, for spacing between vessel and bank more than about 0.3L, the interaction effects increase slowly as lateral spacing decreases. Also, for the water depth to draft ratio(h/d) less than about 1.5, the hydrodynamic interaction effects increase dramatically as h/d decreases.

Biomechanical Model of Hand to Predict Muscle Force and Joint Force (근력과 관절력 예측을 위한 손의 생체역학 모델)

  • Kim, Kyung-Soo;Kim, Yoon-Hyuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • Recently, importance of the rehabilitation of hand pathologies as well as the development of high-technology hand robot has been increased. The biomechanical model of hand is indispensable due to the difficulty of direct measurement of muscle forces and joint forces in hands. In this study, a three-dimensional biomechanical model of four fingers including three joints and ten muscles in each finger was developed and a mathematical relationship between neural commands and finger forces which represents the enslaving effect and the force deficit effect was proposed. When pressing a plate under the flexed posture, the muscle forces and the joint forces were predicted by the optimization technique. The results showed that the major activated muscles were flexion muscles (flexor digitorum profundus, radial interosseous, and ulnar interosseous). In addition, it was found that the antagonistic muscles were also activated rather than the previous models, which is more realistic phenomenon. The present model has considered the interaction among fingers, thus can be more powerful while developing a robot hand that can totally control the multiple fingers like human.

Refined optimal passive control of buffeting-induced wind loading of a suspension bridge

  • Domaneschi, M.;Martinelli, L.
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2014
  • Modern design of long suspension bridges must satisfy at the same time spanning very long distances and limiting their response against several external loads, even if of high intensity. Structural Control, with the solutions it provides, can offer a reliable contribution to limit internal forces and deformations in structural elements when extreme events occur. This positive aspect is very interesting when the dimensions of the structure are large. Herein, an updated numerical model of an existing suspension bridge is developed in a commercial finite element work frame, starting from original data. This model is used to reevaluate an optimization procedure for a passive control strategy, already proven effective with a simplified model of the buffeting wind forces. Such optimization procedure, previously implemented with a quasi-steady model of the buffeting excitation, is here reevaluated adopting a more refined version of the wind-structure interaction forces in which wind actions are applied on the towers and the cables considering drag forces only. For the deck a more refined formulation, based on the use of indicial functions, is adopted to reflect coupling with the bridge orientation and motion. It is shown that there is no variation of the previously identified optimal passive configuration.

Development of a VR based epidural anesthesia trainer using a robotic device (로봇을 이용한 경막외마취 훈련기의 개발)

  • Kim J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.135-138
    • /
    • 2005
  • Robotic devices have been widely used in many medical applications due to their accuracy and programming ability. One of the applications is a virtual reality medical simulator, which trains medical personnel in a computer generated environment. In this paper, we are going to present an application, an epidural anesthesia trainer. Because performing epidural injections is a delicate task, it demands a high level of skill and precision from the physician. This trainer uses a robotic device and computer controlled solenoid valve to recreate interaction forces between the needle and the various layers of tissues around the spinal cord. The robotic device is responsible for generation of interaction forces in real time and can be used to be haptic guidance that allows the user to follow a previous recorded expert procedure and feel the encountered forces.

  • PDF

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.