• 제목/요약/키워드: Inter-turn short circuit

검색결과 8건 처리시간 0.017초

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

Winding Turn-to-Turn Faults Detection of Fault-Tolerant Permanent-Magnet Machines Based on a New Parametric Model

  • Liu, Guohai;Tang, Wei;Zhao, Wenxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.23-30
    • /
    • 2013
  • This paper proposes a parametric model for inter-turn fault detection in a fault-tolerant permanent-magnet (FTPM) machine, which can predict the effect of the short-circuit fault to various physical quantity of the machine. For different faulty operations, a new effective stator inter-turn fault detection method is proposed. Finally, simulations of vector-controlled FTPM machine drives are given to verify the feasibility of the proposed method, showing that even single-coil short-circuit fault could be exactly detected.

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

Clarke 변환을 응용한 3상 유도전동기의 Inter Turn Short Circuit 진단 (Diagnosis of Inter Turn Short Circuit in 3-Phase Induction Motors Using Applied Clarke Transformation)

  • 고영진;김경민
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.518-523
    • /
    • 2023
  • 고정자 권선단락은 미세한 턴이 단락되어 급격히 고장이 심각해짐에 따라 ITSC의 진단이 중요시되고 있다. 그러나, 3상 유도전동기의 노이즈 및 손실등과 유사한 특징을 가짐에 따라 ITSC진단에 많은 어려움이 있다. 이를 효율적으로 진단하기 위해서 인공지능 기법으로 연구되고 있으나, 현장에서는 모델기반 기법이 두루 활용되고 있음에 따라 모델기반 기법에 대한 진단 성능개선 연구가 필요한 실정이다. 이에 본 논문에서는 회전하고 있는 자속에 변화를 무시하며, 전류 성분만을 이용할 수 있도록 Clarke변환 방법을 응용하여 진단방법을 제안하였다. 이에 30분간의 정상 및 ITSC 상태의 측정 결과, 정상상태를 ITSC 상태로 오인식하는 경우 0.2[%], ITSC상태를 정상상태로 오거부하는 경우 0.26[%]로 효율적인 진단 방법임을 실험을 통해 알 수 있었다.

고정자 권선 단락에 따른 농형 유도전동기의 특성해석 (Analysis of Squirrel Cage Induction Motors with Stator Winding Inter-turn Short Circuit)

  • 김미정;김병국;문지우;조윤현;황돈하;강동식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.150-152
    • /
    • 2007
  • The stator faults yield asymmetrical operation of induction machines, such as irregular current, torque pulsation, increased losses and decreased average torque. So it is necessary to detect the stator faults and develope the monitoring system for detecting faults including vibration and noise. This paper describes the method to analysis the induction motors with the stator winding inter-turn short for investigation of the asymmetrical operation during normal and transient states. And a simple method is used for the simulation and analysis of the induction machines with stator asymmetries. Finally, simulation results, finite element analysis and experimental ones are presented. The results can be useful for real-time on-line monitoring of an induction motor.

  • PDF

CNN을 이용한 3상 유도전동기 ITSC 진단의 효율적인 1차원 전류 신호 구성 및 Encoding방법 (Efficient One-dimensional Current Configuration and Encoding Method for ITSC Diagnosis of 3-Phase Induction Motor using CNN)

  • 고영진
    • 전기전자학회논문지
    • /
    • 제28권2호
    • /
    • pp.180-186
    • /
    • 2024
  • 본 논문에서는 CNN을 이용한 3상 유도모터 ITSC(Inter-Turn Short Circuit) 고장진단에 있어서, 전류 데이터를 이용한 고장 진단 및 효율적인 이미지 encoding 방법을 제안하도록 한다. 진동, 소음센서를 이용한 방법과 달리 전류를 이용하는 방법은 데이터의 손실이 낮을 수 있다는 장점은 있지만, 3상 신호로 인해 CNN의 채널 수 증가의 부담이있다. 이에 D-Q 동기좌표계의 D축 성분만의 데이터를 활용하여 채널 부담을 줄이고, 효율적인 입력 이미지 구성 방법을 알아보고자 SWM(Slide Window Method)과 GAF(Gramian Angular Field)방식을 비교하도록 하였다. 데이터는 무부하부터 전부하까지 전체 변화를 고려하였으며, 그 결과, GAF방식은 약 74%, SWM방식은 약 65%로, GAF방식이 약 9%의 높은 정확도를 보임을 알 수 있었다. 또한, 학습된 속도에 있어서 약 14.74[s]로 전체 학습 시간대비 차이가 없었으며, 100 epoch 이하에서는 빠른 속도로 학습이 가능함을 알 수 있었다.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.