• Title/Summary/Keyword: Inter-cell interference

Search Result 142, Processing Time 0.024 seconds

Semi-distributed dynamic inter-cell interference coordination scheme for interference avoidance in heterogeneous networks

  • Padmaloshani, Palanisamy;Nirmala, Sivaraj
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Inter-cell interference (ICI) is a major problem in heterogeneous networks, such as two-tier femtocell (FC) networks, because it leads to poor cell-edge throughput and system capacity. Dynamic ICI coordination (ICIC) schemes, which do not require prior frequency planning, must be employed for interference avoidance in such networks. In contrast to existing dynamic ICIC schemes that focus on homogeneous network scenarios, we propose a novel semi-distributed dynamic ICIC scheme to mitigate interference in heterogeneous network scenarios. With the goal of maximizing the utility of individual users, two separate algorithms, namely the FC base station (FBS)-level algorithm and FC management system (FMS)-level algorithm, are employed to restrict resource usage by dominant interference-creating cells. The distributed functionality of the FBS-level algorithm and low computational complexity of the FMS-level algorithm are the main advantages of the proposed scheme. Simulation results demonstrate improvement in cell-edge performance with no impact on system capacity or user fairness, which confirms the effectiveness of the proposed scheme compared to static and semi-static ICIC schemes.

Performance of Unified Inter-Cell Interference Avoidance and Cancellation in OFDM Mobile Cellular Systems (OFDM 이동 셀룰러 시스템에서 셀간간섭 회피 및 제거의 결합 성능 분석)

  • Kwon, Jae-Kyun;Lee, Hee-Soo;Ahn, Jae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.371-376
    • /
    • 2008
  • In this paper, we explain the unified inter-cell interference avoidance and cancellation in OFDM mobile cellular systems. Interference avoidance is used for cell-interior or two-cell-edge users, and interference cancellation is applied to three-cell-edge users. The performance of the unified scheme is evaluated by simplified system simulation. Link simulation results are used in the interpretation of system simulation output. We compare three schemes which are "no interference management," "only interference avoidance," "both avoidance and cancellation." Primary performance measures are the data rate of the 5th percentile user and the mean data rate. Simulation results show that interference management schemes greatly improve the cell edge performance, but slightly reduce the mean data rate. Use of both avoidance and cancelaltion is better than that of only avoidance in terms of the cell edge throughput and the mean data rate.

Inter-Cell Interference Management for Next-Generation Wireless Communication Systems

  • Kwon, Ho-Joong;Ko, Soo-Min;Seo, Han-Byul;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.258-267
    • /
    • 2008
  • In this paper, we examine what changes the next-generation wireless communication systems will experience in terms of the technologies, services, and networks and, based on that, we investigate how the inter-cell interference management should evolve in various aspects. We identify that the main driving forces of the future changes involve the data-centric services, new dynamic service scenarios, all-IP core access networks, new physical-layer technologies, and heavy upload traffic. We establish that in order to cope with the changes, the next-generation inter-cell interference management should evolve to 1) set the objective of providing a maximal data rate, 2) take the form of joint management of power allocation and user scheduling, 3) operate in a fully distributed manner, 4) handle the time-varying channel conditions in mobile environment, 5) deal with the changes in interference mechanism triggered by the new physical-layer technologies, and 6) increase the spectral efficiency while avoiding centralized coordination of resource allocation of the users in the uplink channel.

MIMO-OFDM Receiver Algorithm with the Capability of Inter-cell or Inter-sector Interference Cancellation (인접 셀 혹은 인접 섹터 간섭제거 능력을 갖는 MIMO-OFDM 수신 알고리즘)

  • Ko, Kyun-Byoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • In this paper, the author presents the MIMO(Multi-Input Multi-Output) receiver algorithm with the capability of inter-cell or inter-sector interference cancellation over multi-antenna OFDM(Orthogonal Frequency Division Multiplexing) systems. As contrast with the previous research dealing with the filtering scheme at the time domain, the proposed algorithm is presented as the pre-filtering scheme which can be applicable to the frequency domain. Note that the proposed one can be implemented only by pilot symbols which are used in the channel estimation. In addition, it is analytically confirmed that the proposed scheme can be applied for either MIMO( C-SM(Collaborative-Spatial Multiplexing)) interference or SIMO(Single-Input Multi-Out) interference. The proposed receiver algorithm is verified by simulations over UL-PUSC SR off in IEEE 802.16e standard. From simulation results, it is confirmed that the proposed one can be applicable regardless of the kind of interference. Furthermore, it is verified that the performance is guaranteed even under Ole severe effect of interference and the improvement of system throughput is guaranteed.

Dynamic Opportunistic Interference Alignment for Random-Access Small-Cell Networks (랜덤 엑세스 스몰셀 무선망에서의 실시간 기회적 간섭정렬 기법 연구)

  • Jeon, Sang-Woon;Shin, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.675-681
    • /
    • 2014
  • As the recently soaring wireless traffic, small-cell techniques have been actively studied in order to support such a wireless demand for cellular wireless networks. This paper studies interference mitigation methods for random-access small-cell networks. Although inter-cell interference between small random-access cells is one of the main factors to degrade overall performance, most of the previous works focused on interference mitigation between users in each cell. To address such limitation, dynamic opportunistic interference alignment is proposed exploiting statistical characteristics of random-access. It is demonstrated by simulation that the proposed scheme outperforms the previous approach as the number of cells or the number of users in each cell increases.

Performance of Frequency Planning and Channel Allocation Algorithm for Unified Inter-Cell Interference Avoidance and Cancellation in OFDMA Cellular Systems (OFDMA 셀룰러 시스템에서 셀 간 간섭 회피 및 제거 기법을 적용한 주파수 설계와 채널 할당 알고리즘의 성능)

  • Lee, Jae-Hoon;Kim, Dong-Woo;Lee, Hee-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.99-106
    • /
    • 2009
  • In this paper, we propose UCA algorithms that are applied to the unified inter-cell interference mitigation through frequency plannings in OFDMA cellular systems. Under three frequency plannings, UCA algorithms allocate frequency channels to UEs(User Equipments). Proposed UCA algorithms require the information of received signal power from home sector and neighbor sectors respectively. We compare all possible combinations of UCA algorithms and frequency plannings through compute simulation. A primary performance measure is the low 5th percentile of SINR at UEs. The proposed UCA algorithms can avoid the interference to neighbor cells by allocating relatively low transmit power to centrally-located UEs and cancel inter-cell interference at cell-edge UEs by a coordinated symbol repetition. We show that UCA algorithm 2 applied in frequency planning 1 is promising among other combinations of UCA algorithms and frequency palnnings in terms of the low 5th percentile of SINR at UEs.

Inter-Cell Interference Coordination Scheme for OFDM-based 4G Cellular Systems (OFDM 기반의 4G 셀룰러 시스템을 위한 인접 셀간의 간섭 조정 기법)

  • Yoon, Gil-San;Lee, Jeong-Hwan;Cho, In-Sik;Seo, Chang-Woo;You, Cheol-Woo;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.8
    • /
    • pp.16-21
    • /
    • 2009
  • OFDM is a key technology for 4G cellular systems in the future. But when OFDM is used in cellular system environment, it has severe inter-cell interference problems. In this paper, we propose an ICIC scheme that can reduce inter-cell interference for OFDM-based 4G cellular systems. and we analyze the efficiency of the proposed scheme. Simulation is carried out according to the simplified 3GPP LTE system level simulation parameters. We have confirmed the improvement of Geometry efficiency about 4dB at the results.

A Scheduling Algorithm to reduce inter-cell interference in OFDM Systems (OFDM 시스템에서의 인접 셀 간의 간섭을 줄이기 위한 스케줄링 알고리즘)

  • Lee, Tae-Rak;Wu, Hyuk;Lee, Dong-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.521-529
    • /
    • 2010
  • In this paper, we propose a new scheduling algorithms in OFDM systems to reduce inter-cell interference. The proposed algorithm applies different subcarrier allocation sequences for different cells which is optimized through integer programming to minimize inter-cell interference. System level simulation is executed to derive the performance of the proposed algorithm. Simulation results show that the proposed scheduling algorithm improves user fairness as well as throughput compared with previous algorithms and therefore improves support of user QoS.

Degrees of Freedom of Multi-Cell MIMO Interference Broadcast Channels With Distributed Base Stations

  • Huang, Hongbing;Liu, Junyi;Zhang, Yi;Cai, Qing;Zhang, Bowei;Jiang, Fengwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.635-656
    • /
    • 2019
  • In this paper, we investigate the degrees of freedom (DoF) of a multi-cell multi-user multiple-input multiple-output (MIMO) interference broadcast channel (IBC) with non-cooperation distributed base stations (BS), where each BS serves users of its corresponding cell. When all BSs simultaneously transmit their own signals over the same frequency band in the MIMO IBC, the edge users in each cell will suffer the inter-cell interference (ICI) and inter-user interference (IUI) signals. In order to eliminate the ICI and IUI signals, a distributed space time interference alignment (DSTIA) approach is proposed where each BS has only limited access to distributed moderately-delay channel state information at the transmitter (CSIT). It is shown that the DSTIA scheme can obtain the appreciate DoF gains. In addition, the DoF upper bound is asymptotically achievable as the number of antenna at each BS increases. It is shown that the DSTIA method can get DoF gains over other interference alignment schemes with delayed CSIT in literature. Moreover, the DSTIA method can attain higher DoFs than the IA schemes with global CSIT for certain antenna configurations.

A Study on Inter Band Interference and PAPR Reduction in Multi-Cell System based on OFDM Techniques (OFDM 기법에 기반한 Multi-Cell 시스템에서 PAPR 감소와 대역간 간섭에 관한 연구)

  • Kim, Wan-Tae;Yoo, Sun-Yong;Jo, Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.693-696
    • /
    • 2008
  • The systems for mobile communication services of fourth generation use OFDM (Orthogonal Frequency Division Multiplexing) scheme that ran transmit large amounts of data to support the multimedia services, and consist of several types of cell, such as Macro Cell, Pico Cell, Femto Cell to improve the qualify of service. According to subdivision of communication region, superposition of cells in co-channel different from conventional single cell is used, but it cause inter band interference between systems. In particular, an OFDM signal consists of a number of independently modulated subcarriers, and superposition of these subcarriers causes a problem that ran give a large PAPR. Increased PAPR induces signal distortion passing through components such as power amplifier so that inter band interference is caused by out-of-band spectrum radiation. In order to minimize the inter band interference, this paper applies PAPR reduction scheme and analyzes the out-of-band spectrum radiation when the signal passes through nonlinear components such an power amplifier.

  • PDF