• 제목/요약/키워드: Intent classification

검색결과 42건 처리시간 0.024초

저성능 자원에서 멀티 에이전트 운영을 위한 의도 분류 모델 경량화 (Compressing intent classification model for multi-agent in low-resource devices)

  • 윤용선;강진범
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.45-55
    • /
    • 2022
  • 최근 자연어 처리 분야에서 대규모 사전학습 언어모델(Large-scale pretrained language model, LPLM)이 발전함에 따라 이를 미세조정(Fine-tuning)한 의도 분류 모델의 성능도 개선되었다. 하지만 실시간 응답을 요하는 대화 시스템에서 대규모 모델을 미세조정하는 방법은 많은 운영 비용을 필요로 한다. 이를 해결하기 위해 본 연구는 저성능 자원에서도 멀티에이전트 운영이 가능한 의도 분류 모델 경량화 방법을 제안한다. 제안 방법은 경량화된 문장 인코더를 학습하는 과제 독립적(Task-agnostic) 단계와 경량화된 문장 인코더에 어답터(Adapter)를 부착하여 의도 분류 모델을 학습하는 과제 특화적(Task-specific) 단계로 구성된다. 다양한 도메인의 의도 분류 데이터셋으로 진행한 실험을 통해 제안 방법의 효과성을 입증하였다.

발화 의도 예측 및 슬롯 채우기 복합 처리를 위한 한국어 데이터셋 개발 (Development of Korean dataset for joint intent classification and slot filling)

  • 한승규;임희석
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.57-63
    • /
    • 2021
  • 사람의 발화 내용을 이해하도록 하는 언어 인식 시스템은 주로 영어로 연구되어 왔다. 본 논문에서는 시스템과 사용자의 대화 내용을 수집한 말뭉치를 바탕으로 언어 인식 시스템을 훈련시키고 평가할 때 사용할 수 있는 한국어 데이터셋을 개발하고, 관련 통계를 제시한다. 본 데이터셋은 식당 예약이라는 고정된 주제 안에서 사용자의 발화 의도와 슬롯 채우기를 해야 하는 데이터셋이다. 본 데이터셋은 6857개의 한국어 문장으로 이루어져 있으며, 표기된 단어 슬롯의 종류는 총 7개이다. 본 데이터셋에서 표기된 발화의 종류는 총 5개이며, 문장의 발화 내용에 따라 최대 2개까지 동시에 기입되어 있다. 영어권에서 연구된 모델을 본 데이터셋에 적용시켜 본 결과, 발화 의도 추측 정확도는 조금 하락하였고, 슬롯 채우기 F1 점수는 크게 차이나는 모습을 보였다.

사전학습 모델을 이용한 음식업종 고객 발화 의도 분류 분석 (Analysis of utterance intent classification of cutomer in the food industry using Pretrained Model)

  • 김준회;임희석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.43-44
    • /
    • 2022
  • 기존 자연어 처리 모델은 문맥 단위 단어 임베딩을 처리하지 못하는 한계점을 가지고 있는 한편 최근 BERT 기반 사전학습 모델들은 문장 단위 임베딩이 가능하고 사전학습을 통해 학습 효율이 비약적으로 개선되었다는 특징이 있다. 본 논문에서는 사전학습 언어 모델들을 이용하여 음식점, 배달전문점 등 음식 업종에서 발생한 고객 발화 의도를 분류하고 모델별 성능을 비교하여 최적의 모델을 제안하고자 한다. 연구결과, 사전학습 모델의 한국어 코퍼스와 Vocab 사이즈가 클수록 고객의 발화 의도를 잘 예측하였다. 한편, 본 연구에서 발화자의 의도를 크게 문의와 요청으로 구분하여 진행하였는데, 문의와 요청의 큰 차이점인 '물음표'를 제거한 후 성능을 비교해본 결과, 물음표가 존재할 때 발화자 의도 예측에 좋은 성능을 보였다. 이를 통해 음식 업종에서 발화자의 의도를 예측하는 시스템을 개발하고 챗봇 시스템 등에 활용한다면, 발화자의 의도에 적합한 서비스를 정확하게 적시에 제공할 수 있을 것으로 기대한다.

  • PDF

전통적인 챗봇과 ChatGPT 연계 서비스 방안 연구 (A Study on the Service Integration of Traditional Chatbot and ChatGPT)

  • 정천수
    • Journal of Information Technology Applications and Management
    • /
    • 제30권4호
    • /
    • pp.11-28
    • /
    • 2023
  • This paper proposes a method of integrating ChatGPT with traditional chatbot systems to enhance conversational artificial intelligence(AI) and create more efficient conversational systems. Traditional chatbot systems are primarily based on classification models and are limited to intent classification and simple response generation. In contrast, ChatGPT is a state-of-the-art AI technology for natural language generation, which can generate more natural and fluent conversations. In this paper, we analyze the business service areas that can be integrated with ChatGPT and traditional chatbots, and present methods for conducting conversational scenarios through case studies of service types. Additionally, we suggest ways to integrate ChatGPT with traditional chatbot systems for intent recognition, conversation flow control, and response generation. We provide a practical implementation example of how to integrate ChatGPT with traditional chatbots, making it easier to understand and build integration methods and actively utilize ChatGPT with existing chatbots.

"의방집해(醫方集解)" 처방 분류에 대한 고찰 (Review on Classification of Prescription in "Yifangjijie")

  • 송지청;정헌영;금경수
    • 동의생리병리학회지
    • /
    • 제24권1호
    • /
    • pp.26-34
    • /
    • 2010
  • "Yifangjijie" is a collection of prescription in Traditional Medicine, which was published in Qing dynasty. In this book, effectiveness of prescriptions 1s described by means of Meridians uniquely compared with any others. Therefore, I tried to pay attention to those explanations and arrange by Meridians and effectiveness of prescriptions. Classification by effectiveness of prescriptions has a few points of emphasis in Meridians and Classification of Meridians by effectiveness of prescriptions has intent in somehow. In this paper, authors will explain those classification.

Academic Registration Text Classification Using Machine Learning

  • Alhawas, Mohammed S;Almurayziq, Tariq S
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.93-96
    • /
    • 2022
  • Natural language processing (NLP) is utilized to understand a natural text. Text analysis systems use natural language algorithms to find the meaning of large amounts of text. Text classification represents a basic task of NLP with a wide range of applications such as topic labeling, sentiment analysis, spam detection, and intent detection. The algorithm can transform user's unstructured thoughts into more structured data. In this work, a text classifier has been developed that uses academic admission and registration texts as input, analyzes its content, and then automatically assigns relevant tags such as admission, graduate school, and registration. In this work, the well-known algorithms support vector machine SVM and K-nearest neighbor (kNN) algorithms are used to develop the above-mentioned classifier. The obtained results showed that the SVM classifier outperformed the kNN classifier with an overall accuracy of 98.9%. in addition, the mean absolute error of SVM was 0.0064 while it was 0.0098 for kNN classifier. Based on the obtained results, the SVM is used to implement the academic text classification in this work.

메타데이터를 활용한 기록물 자동분류 성능 요소 비교 (Comparison of Performance Factors for Automatic Classification of Records Utilizing Metadata)

  • 김영범;장우권
    • 정보관리학회지
    • /
    • 제40권3호
    • /
    • pp.99-118
    • /
    • 2023
  • 이 연구의 목적은 기록물의 맥락정보를 담고 있는 메타데이터를 활용하여 기록물 자동분류 과정에서의 성능요소를 파악하는데 있다. 연구를 위해 2022년 중앙행정기관 원문정보 약 97,064건을 수집하였다.수집한 데이터를 대상으로 다양한 분류 알고리즘과 데이터선정방법, 문헌표현기법을 적용하고 그 결과를 비교하여 기록물 자동 분류를 위한 최적의 성능요소를 파악하고자 하였다. 연구 결과 분류 알고리즘으로는 Random Forest가, 문헌표현기법으로는 TF 기법이 가장 높은 성능을 보였으며, 단위과제의 최소데이터 수량은 성능에 미치는 영향이 미미하였고 자질은 성능변화에 명확한 영향을 미친다는 것이 확인되었다.

Encoder Layer를 이용한 의도 분류 성능 비교 (Comparing the Performances of Intent Classifications by Encoder Layer)

  • 안혁주;김혜영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.410-413
    • /
    • 2021
  • 본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.

  • PDF

의도 정보를 활용한 다중 레이블 오픈 의도 분류 (Multi-label Open Intent Classification using Known Intent Information)

  • 박나현;조성민;송현제
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.479-484
    • /
    • 2023
  • 다중 레이블 오픈 의도 분류란 다중 의도 분류와 오픈 의도 분류가 합쳐져 오픈 도메인을 가정하고 진행하는 다중 의도 분류 문제이다. 발화 속에는 여러 의도들이 존재한다. 이때 사전에 정의된 의도 여부만을 판별하는 것이 아니라 사전에 정의되어 있는 의도에 대해서만이라도 어떤 의도인지 분류할 수 있어야 한다. 본 논문에서는 발화 속 의도 정보를 활용하여 다중 레이블 오픈 의도를 분류하는 모델을 제안한다. 먼저, 문장의 의도 개수를 예측한다. 그리고 다중 레이블 의도 분류기를 통해 다중 레이블 의도 분류를 진행하여 의도 정보를 획득한다. 획득한 의도 정보 속 다중 의도 개수와 전체 의도 개수를 비교하여 전체 의도 개수가 더 많다면 오픈 의도가 존재한다고 판단한다. 실험 결과 제안한 방법은 MixATIS의 75% 의도에서 정확도 94.49, F1 97.44, MixSNIPS에서는 정확도 86.92, F1 92.96의 성능을 보여준다.

  • PDF

근전도 패턴 인식 및 분류 기반 다자유도 전완 의수 개발 (Development of Multi-DoFs Prosthetic Forearm based on EMG Pattern Recognition and Classification)

  • 이슬아;최유나;양세동;홍근영;최영진
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.228-235
    • /
    • 2019
  • This paper presents a multiple DoFs (degrees-of-freedom) prosthetic forearm and sEMG (surface electromyogram) pattern recognition and motion intent classification of forearm amputee. The developed prosthetic forearm has 9 DoFs hand and single-DoF wrist, and the socket is designed considering wearability. In addition, the pattern recognition based on sEMG is proposed for prosthetic control. Several experiments were conducted to substantiate the performance of the prosthetic forearm. First, the developed prosthetic forearm could perform various motions required for activity of daily living of forearm amputee. It was able to control according to shape and size of the object. Additionally, the amputee was able to perform 'tying up shoe' using the prosthetic forearm. Secondly, pattern recognition and classification experiments using the sEMG signals were performed to find out whether it could classify the motions according to the user's intents. For this purpose, sEMG signals were applied to the multilayer perceptron (MLP) for training and testing. As a result, overall classification accuracy arrived at 99.6% for all participants, and all the postures showed more than 97% accuracy.