• Title/Summary/Keyword: Intensity modulated beam

Search Result 109, Processing Time 0.029 seconds

Comparison of the Dose Distributions with Beam Arrangements in the Stereotactic Body Radiotherapy (SBRT) for Primary Lung Cancer (원발성 폐암에서 정위적 체부 방사선치료의 빔 배열에 따른 선량분포의 비교)

  • Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • To compare 2 beam arrangements, circumferential equally angles (EA) beams or partially angles (PA) beams for stereotactic body radiation therapy (SBRT) of primary lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target, ipsilateral lung, contralateral lung, and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 12 patients, four treatment plans were generated per data sets ($IMRT_{EA}$, $IMRT_{PA}$, $VMAT_{EA}$, $VMAT_{PA}$). The prescribed dose (PD) was 60 Gy in 4 fractions to 95% of the planning target volume (PTV) for a 6-MV photon beam. When compared with the IMRT and VMAT treatment plan for 2 beams, conformity index, homogeneity index, high dose spillage, D2 cm (Dmax at a distance ${\geq}2cm$ beyond the PTV), R50 (ratio of volume circumscribed by the 50% isodose line and the PTV), resulted in similar. But Dmax of the Organ at risk (OAR), spinal cord, trachea, resulted in differ between four treatment plans. Especially $HDS_{location}$ showed big difference in 21.63% vs. 26.46%.

Dosimetric Evaluation of 3-D Conformal and Intensity-modulated Radiotherapy for Breast Cancer after Conservative Surgery

  • Mansouri, Safae;Naim, Asmaa;Glaria, Luis;Marsiglia, Hugo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4727-4732
    • /
    • 2014
  • Background: Breast cancers are becoming more frequently diagnosed at early stages with improved long term outcomes. Late normal tissue complications induced by radiotherapy must be avoided with new breast radiotherapy techniques being developed. The aim of the study was to compare dosimetric parameters of planning target volume (PTV) and organs at risk between conformal (CRT) and intensity-modulated radiation therapy (IMRT) after breast-conserving surgery. Materials and Methods: A total of 20 patients with early stage left breast cancer received adjuvant radiotherapy after conservative surgery, 10 by 3D-CRT and 10 by IMRT, with a dose of 50 Gy in 25 sessions. Plans were compared according to dose-volume histogram analyses in terms of PTV homogeneity and conformity indices as well as organs at risk dose and volume parameters. Results: The HI and CI of PTV showed no difference between 3D-CRT and IMRT, V95 gave 9.8% coverage for 3D-CRT versus 99% for IMRT, V107 volumes were recorded 11% and 1.3%, respectively. Tangential beam IMRT increased volume of ipsilateral lung V5 average of 90%, ipsilateral V20 lung volume was 13%, 19% with IMRT and 3D-CRT respectively. Patients treated with IMRT, heart volume encompassed by 60% isodose (30 Gy) reduced by average 42% (4% versus 7% with 3D-CRT), mean heart dose by average 35% (495cGy versus 1400 cGy with 3D-CRT). In IMRT minimal heart dose average is 356 cGy versus 90cGy in 3D-CRT. Conclusions: IMRT reduces irradiated volumes of heart and ipsilateral lung in high-dose areas but increases irradiated volumes in low-dose areas in breast cancer patients treated on the left side.

A Dosimetric Comparision of IMRT and VMAT in Synchronous Bilateral Breast Cancer (양측성 유방암의 세기조절방사선치료(IMRT)와 부피적조절회전방사선치료(VMAT)의 비교연구)

  • Kim, Sung-Jin;Youn, Seon-Min;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.284-289
    • /
    • 2013
  • A study was performed comparing dosimetric characteristics of volumetric modulated arc and intensity modulated radiatio therapy on patients with bilateral breast cancer. For 5 patients, 3 plans were made for each patient; IMRT beams 8 and 12 of the beam intensity modulated radiation therapy, volumetric modulated arc therapy plan. The average PTVs volumes and $D_{98}$ for 12-IMRT were $51.04{\pm}0.57$ Gy (right), $50.80{\pm}1.07$ Gy (left), $42.94{\pm}16.16$ Gy (right), $42.56{\pm}2.09$ Gy (left). HI ($D_5{\sim}D_{95}$) and $CI_{90,95}$, even 12-IMRT has shown excellent results. In OAR, 3 plans showed excellent results. But the lowest dose of 12-IMRT. 12-IMRT achieved similar PTV coverage and sparing of organs at risk than 8-IMRT and VMAT.

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

A Study on the Detection of Surface Acoustic Waves by Noncontact Method (비접촉 방법에 의한 표면탄성파의 검출)

  • You, I.H.;Yoon, J.S.;Kim, D.I.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.56-62
    • /
    • 1990
  • Surface Acoustic Waves(SAW) are generated on silicon wafer and $YZ-LiTaO_3$ substrate and are detected by noncontact method. As wave sources two kinds of transducers are used : the wedge-type of 20.0 MHz and fabricated Interdigital Transducer(IDT) of 20.8 MHz. SAW are modulated by the optical chopper frequency and are syncronized with a laser beam. In signal processing, intensity variations of light due to the intensity of SAW are analyzed using lock- in amplifier. From the results, corresponding to the applied input power, the intensity variations of a deflected light by corrugations on the substrates are increased and saturation phenomenon is observed.

  • PDF

The Role of Modern Radiotherapy Technology in the Treatment of Esophageal Cancer

  • Moon, Sung Ho;Suh, Yang-Gun
    • Journal of Chest Surgery
    • /
    • v.53 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • Radiation therapy (RT) has improved patient outcomes, but treatment-related complication rates remain high. In the conventional 2-dimensional and 3-dimensional conformal RT (3D-CRT) era, there was little room for toxicity reduction because of the need to balance the estimated toxicity to organs at risk (OARs), derived from dose-volume histogram data for organs including the lung, heart, spinal cord, and liver, with the planning target volume (PTV) dose. Intensity-modulated RT (IMRT) is an advanced form of conformal RT that utilizes computer-controlled linear accelerators to deliver precise radiation doses to the PTV. The dosimetric advantages of IMRT enable better sparing of normal tissues and OARs than is possible with 3D-CRT. A major breakthrough in the treatment of esophageal cancer (EC), whether early or locally advanced, is the use of proton beam therapy (PBT). Protons deposit their highest dose of radiation at the tumor, while leaving none behind; the resulting effective dose reduction to healthy tissues and OARs considerably reduces acute and delayed RT-related toxicity. In recent studies, PBT has been found to alleviate severe lymphopenia resulting from combined chemo-radiation, opening up the possibility of reducing immune suppression, which might be associated with a poor prognosis in cases of locally advanced EC.

Status of Domestic and International Recommendations for Protection Design and Evaluation of Medical Linear Accelerator Facilities

  • Choi, Sang Hyoun;Shin, Dong Oh;Shin, Jae-ik;Kwon, Na Hye;Ahn, So Hyun;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • Various types of high-precision radiotherapy, such as intensity-modulated radiation therapy (IMRT), tomotherapy (Tomo), and stereotactic body radiation therapy have been available since 1997. After being covered by insurance in 2015, the number of IMRT cases rapidly increased 18-fold from 2011 to 2018 in Korea. IMRT, which uses a high-beam irradiation monitor unit, requires higher shielding conditions than conventional radiation treatments. However, to date, research on the shielding of facilities using IMRT and the current understanding of its status are insufficient, and detailed safety regulation procedures have not been established. This study investigated the recommended criteria for the shielding evaluation of facilities using medical linear accelerators (LINACs), including 1) the current status of safety management regulations and systems in domestic and international facilities using medical LINACs and 2) the current status of the recommended standards for safety management in domestic and international facilities using medical LINACs. It is necessary to develop and introduce a safety management system for facilities using LINACs for clinical applications that is suitable for the domestic medical environment and corresponds to the safety management systems for LINACs used overseas.

A Study on Superficial Dose of 6MV-FFF in HalcyonTM LINAC: Phantom Study (HalcyonTM 선형가속기 6MV-FFF 에너지의 표재 선량에 대한 고찰: Phantom Study)

  • Choi, Seong Hoon;Um, Ki Cheon;Yoo, Soon Mi;Park, Je Wan;Song, Heung Kwon;Yoon, In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.31-39
    • /
    • 2020
  • Purpose: The aims of this study were to compare the superficial dose with Optically Stimulated Luminescence Dosimeter(OSLD) measurement and Treatment Planning System(TPS) calculation for 6MV-Flattening Filter Free(FFF) energy using HalcyonTM and TrueBeamTM. Materials and methods: Phantom study was performed using the CT images of human phantom. In the treatment planning system, the Planning Target Volume(PTV) was contoured which is similar to Glottic cancer. Furthermore, Point(M), Point(R), and Point(L) were contoured at the iso-center of head and neck region and 5mm bolus was applied to the body contour. Each treatment plans using 6MV-FFF energy from HalcyonTM and TrueBeamTM with static Intensity Modulated Radiation Therapy(IMRT) and Volumetric Modulated Arc Therapy(VMAT) were established with eclipse. To reproduce the same position as the TPS, OSLDs were placed at the iso-center point and 5mm bolus was applied to compare the error rate after the dose delivery. Result: The results of the study using human phantom are as follows. In case of HalcyonTM, the mean absolute error rates of the point dose using the treatment planning system and the dose measured by OSLD were 1.7%±1.2% for VMAT and 4.0±2.8% for IMRT. Also TrueBeamTM was identified as 2.4±0.4% and 8.6±1.8% respectively for VMAT and IMRT. Conclusion: Through the results of this study, TrueBeamTM confirmed that the average error rate was 2.4 times higher for VMAT and 3.6 times higher for IMRT than HalcyonTM. Therefore, based on the results of this study, If we need a more accurate dose assessment for the superficial dose, It is expected that using HalcyonTM would be better than TrueBeamTM.

A Monitor Unit Verification Calculation in IMRT as a Dosimetry QA

  • Kung, J.H.;Chen, G.T.Y.;Kuchnir, F.T.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.68-73
    • /
    • 2002
  • In standard teletherapy, a treatment plan is generated with the aid of a treatment planning system, but it is common to perform an independent monitor unit verification calculation (MUVC). In exact analogy, we propose and demonstrate that a simple and accurate MUVC in Intensity Modulated Radiotherapy (IMRT) is possible. We introduce a concept of Modified Clarkson Integration (MCI). In MCI, we exploit the rotational symmetry of scattering to simplify the dose calculation. For dose calculation along a central axis (CAX), we first replace the incident IMRT fluence by an azimuthally averaged fluence. Second, the Clarkson Integration is carried over annular sectors instead of over pie sectors. We wrote a computer code, implementing the MCI technique, in order to perform a MUVC for IMRT purposes. We applied the code to IMRT plans generated by CORVUS. The input to the code consists of CORVUS plan data (e.g., DMLC files, jaw settings, MU for each IMRT field, depth to isocenter for each IMRT field), and the output is dose contribution by individual IMRT field to the isocenter. The code uses measured beam data for Sc, Sp, TPR, (D/Mu)$\_$ref/ and includes effects from MLC transmission, and radiation field offset. On a 266 MHZ desktop computer, the code takes less than 15 sec to calculate a dose. The doses calculated with MCI algorithm agreed within +/- 3% with the doses calculated by CORVUS, which uses a 1cm x 1cm pencil beam in dose calculation. In the present version of MCI, skin contour variations and inhomogeneities were neglected.

  • PDF