• Title/Summary/Keyword: Intensity difference map

Search Result 42, Processing Time 0.026 seconds

Assessing the Impact of Sampling Intensity on Land Use and Land Cover Estimation Using High-Resolution Aerial Images and Deep Learning Algorithms (고해상도 항공 영상과 딥러닝 알고리즘을 이용한 표본강도에 따른 토지이용 및 토지피복 면적 추정)

  • Yong-Kyu Lee;Woo-Dam Sim;Jung-Soo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.267-279
    • /
    • 2023
  • This research assessed the feasibility of using high-resolution aerial images and deep learning algorithms for estimating the land-use and land-cover areas at the Approach 3 level, as outlined by the Intergovernmental Panel on Climate Change. The results from different sampling densities of high-resolution (51 cm) aerial images were compared with the land-cover map, provided by the Ministry of Environment, and analyzed to estimate the accuracy of the land-use and land-cover areas. Transfer learning was applied to the VGG16 architecture for the deep learning model, and sampling densities of 4 × 4 km, 2 × 4 km, 2 × 2 km, 1 × 2 km, 1 × 1 km, 500 × 500 m, and 250 × 250 m were used for estimating and evaluating the areas. The overall accuracy and kappa coefficient of the deep learning model were 91.1% and 88.8%, respectively. The F-scores, except for the pasture category, were >90% for all categories, indicating superior accuracy of the model. Chi-square tests of the sampling densities showed no significant difference in the area ratios of the land-cover map provided by the Ministry of Environment among all sampling densities except for 4 × 4 km at a significance level of p = 0.1. As the sampling density increased, the standard error and relative efficiency decreased. The relative standard error decreased to ≤15% for all land-cover categories at 1 × 1 km sampling density. These results indicated that a sampling density more detailed than 1 x 1 km is appropriate for estimating land-cover area at the local level.

Analysis of Aroma Pattern of Gastrodiae Rhizoma by the Drying Conditions (건조 방법에 따른 천마의 향기패턴 분석)

  • Lee, Boo-Yong;Yang, Young-Min;Han, Chan-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.13-17
    • /
    • 2002
  • The study was to analyze aroma patterns of Gastrodiae Rhizoma by the electronic nose with conducing polymer 32 sensors. Response by the electronic nose was analyzed by the principal component analysis (PCA). Sensory evaluation for the organoleptic characteristics of Gastrodiae Rhizoma was also performed. Raw Gastrodiae Rhizoma was very intensive in overall odor and taste. Hot air-dried $60^{\circ}C$ Gastrodiae Rhizoma was relatively weak in overall odor and taste. Intensity of aroma in the electronic nose was the highest in $60^{\circ}C$ hot air-dried Gastrodiae Rhizoma. As quality factor (QF) calcuated from PCA map of normalized pattern data by thirty two sensors showed less than 2, and so aroma pattern among raw, freezed-dried, and hot-air dried Gastrodiae Rhizoma had no difference. When PCA was performed for normalized pattern data by the selected sensitive ten sensors, QF value between raw and $60^{\circ}C$ hot air-dried Gastrodiae Rhizoma was 2.366. Thus aroma pattern of raw and $60^{\circ}C$ hot air-dried Gastrodiae Rhizoma was discriminated in electronic nose.

Analysis of the Surface Urban Heat Island Changes according to Urbanization in Sejong City Using Landsat Imagery (Landsat영상을 이용한 토지피복 변화에 따른 행정중심복합도시의 표면 열섬현상 변화분석)

  • Lee, Kyungil;Lim, Chul-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • Urbanization due to population growth and regional development can cause various environmental problems, such as the urban heat island phenomenon. A planned city is considered an appropriate study site to analyze changes in urban climate caused by rapid urbanization in a short-term period. In this study, changes in land cover and surface heat island phenomenon were analyzed according to the development plan in Sejong City from 2013 to 2020 using Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite imagery. The surface temperature was calculated in consideration of the thermal infrared band value provided by the satellite image and the emissivity, and based on this the surface heat island effect intensity and Urban Thermal Field Variance Index (UTFVI) change analysis were performed. The level-2 land cover map provided by the Ministry of Environment was used to confirm the change in land cover as the development progressed and the difference in the surface heat island intensity by each land cover. As a result of the analysis, it was confirmed that the urbanized area increased by 15% and the vegetation decreased by more than 28%. Expansion and intensification of the heat island phenomenon due to urban development were observed, and it was confirmed that the ecological level of the area where the heat island phenomenon occurred was very low. Therefore, It can suggest the need for a policy to improve the residential environment according to the quantitative change of the thermal environment due to rapid urbanization.

Evaluation of Magnetization Transfer Ratio Imaging by Phase Sensitive Method in Knee Joint (슬관절 부위에서 자화전이 위상감도법에 의한 자화전이율 영상 평가)

  • Yoon, Moon-Hyun;Seung, Mi-Sook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Although MR imaging is generally applicable to depict knee joint deterioration it, is sometimes occurred to mis-read and mis-diagnose the common knee joint diseases. In this study, we employed magnetization transfer ratio (MTR) method to improve the diagnosis of the various knee joint diseases. Spin-echo (SE) T2-weighted images (TR/TE 3,400-3,500/90-100 ms) were obtained in seven cases of knee joint deterioration, FSE T2-weighted images (TR/TE 4,500-5,000/100-108 ms) were obtained in seven cases of knee joint deterioration, gradient-echo (GRE) T2-weighted images (TR/TE 9/4.56/$50^{\circ}$ flip angle, NEX 1) were obtained in 3 cases of knee joint deterioration, In six cases of knee joint deterioration, fat suppression was performed using a T2-weighted short T1/tau inverse recovery (STIR) sequence (TR/TE =2,894-3,215 ms/70 ms, NEX 3, ETL 9). Calculation of MTR for individual pixels was performed on registration of unsaturated and saturated images. After processing to make MTR images, the images were displayed in gray color. For improving diagnosis, three-dimensional isotropic volume images, the MR tristimulus color mapping and the MTR map was employed. MTR images showed diagnostic images quality to assess the patients' pathologies. The intensity difference between MTR images and conventional MRI was seen on the color bar. The profile graph on MTR imaging effect showed a quantitative measure of the relative decrease in signal intensity due to the MT pulse. To diagnose the pathologies of the knee joint, the profile graph data was shown on the image as a small cross. The present study indicated that MTR images in the knee joint were feasible. Investigation of physical change on MTR imaging enables to provide us more insight in the physical and technical basis of MTR imaging. MTR images could be useful for rapid assessment of diseases that we examine unambiguous contrast in MT images of knee disorder patients.

  • PDF

Influence of Parotid from Various Dose Rate in Intensity Modulated Radiation Therapy Planning for Head and Neck Cancer (두경부암 세기변조방사선치료 계획 시 선량율 변화가 이하선에 미치는 영향)

  • Hong, Joo-Wan;Jeong, Yun-Ju;Won, Hui-Su;Chang, Nam-Jun;Choi, Ji-Hun;Seok, Jin-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Purpose: There are various beam parameter in intensity modulated radiation therapy (IMRT). The aim of this study is to investigate how various dose rate affect the parotid in treatment plan of IMRT. Materials and Methods: The study was performed on 10 nasopharyngeal carcinoma patients who have undergone IMRT. CT images were scanned 3 mm of thickness in the same condition and the treatment plan was performed by Eclipse (Ver.7.1, Varian, Palo Alto, USA). The parameters for planning used 6 MV energy and 8 beams under the same dose volume constraint. The variation of dose rates were used 300, 400, 500 MU/min. The mean dose of both parotid was accessed from the calculated planning among the 10 patients. The mean dose of parotid was verificated by 2D diode array (Mapcheck from Sun Nuclear Corporation, Melbourne, Florida). Also, Total monitor unit (MU) and beam-on time was analysed. Results: According to the dose rate, the mean dose of parotid was increased by 0.8%, 2.0% each, when dose rate was changed from 300 MU/min to 400, 500 MU/min, moreover Total MU was increased by 5.4% and 10.6% each. There was also a dose upward trend in the dose measurement of parotid by 2D diode array. However, beam - on time difference of 1~2 minutes was no signigicant in the dose rate increases. Conclusion: From this study, when the dose rates increase, there was a signigicant increase of Total MU and the parotid dose accordingly, however the shortened treatment time was not significant. Hence, it is considered that there is a significant decrease of late side effect in parotid radiation therapy, if the precise dose rate in IMRT is used.

  • PDF

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

Development of Permanent Displacement Model for Seismic Mountain Slope (지진 시 산사면의 영구변위 추정식 개발)

  • Lee, Jong-Hoo;Park, Duhee;Ahn, Jae-Kwang;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • Empirical seismic displacement equations based on the Newmark sliding block method are widely used to develop seismic landslide hazard map. Most proposed equations have been developed for embankments and landfills, and do not consider the dynamic response of sliding block. Therefore, they cannot be applied to Korean mountain slopes composed of thin, uniform soil-layer underlain by an inclined bedrock parallel to the slope. In this paper, a series of two-dimensional dynamic nonlinear finite difference analyses were performed to estimate the permanent seismic slope displacement. The seismic displacement of mountain slopes was calculated using the Newmark method and the equivalent acceleration time history. The calculated seismic displacements of the mountain slopes were compared to a widely used empirical displacement model. We show that the displacement prediction is significantly enhanced if the slope is modeled as a flexible sliding mass and the amplification characteristics are accounted for. Regression equation, which uses PGA, PGV, Arias intensity of the ground motion and the fundamental period of soil layer, is shown to provide a reliable estimate of the sliding displacement. Furthermore, the empirical equation is shown to reliably predict the hazard category.

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.

The Comparison of Susceptibility Changes in 1.5T and3.0T MRIs due to TE Change in Functional MRI (뇌 기능영상에서의 TE값의 변화에 따른 1.5T와 3.0T MRI의 자화율 변화 비교)

  • Kim, Tae;Choe, Bo-Young;Kim, Euy-Neyng;Suh, Tae-Suk;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.154-158
    • /
    • 1999
  • Purpose : The purpose of this study was to find the optimum TE value for enhancing $T_2^{*}$ weighting effect and minimizing the SNR degradation and to compare the BOLD effects according to the changes of TE in 1.5T and 3.0T MRI systems. Materials and Methods : Healthy normal volunteers (eight males and two females with 24-38 years old) participated in this study. Each volunteer was asked to perform a simple finger-tapping task (sequential opposition of thumb to each of the other four fingers) with right hand with a mean frequency of about 2Hz. The stimulus was initially off for 3 images and was then alternatively switched on and off for 2 cycles of 6 images. Images were acquired on the 1.5T and 3.0T MRI with the FLASH (fast low angle shot) pulse sequence (TR : 100ms, FA : $20^{\circ}$, FOV : 230mm) that was used with 26, 36, 46, 56, 66, 76ms of TE times in 1.5T and 16, 26, 36, 46, 56, 66ms of TE in 3.0T MRI system. After the completion of scan, MR images were transferred into a PC and processed with a home-made analysis program based on the correlation coefficient method with the threshold value of 0.45. To search for the optimum TE value in fMRI, the difference between the activation and the rest by the susceptibility change for each TE was used in 1.5T and 3.0T respectively. In addition, the functional $T_2^{*}$ map was calculated to quantify susceptibility change. Results : The calculated optimum TE for fMRI was $61.89{\pm}2.68$ at 1.5T and $47.64{\pm}13.34$ at 3.0T. The maximum percentage of signal intensity change due to the susceptibility effect inactivation region was 3.36% at TE 66ms in 1.5T 10.05% at TE 46ms in 3.0T, respectively. The signal intensity change of 3.0T was about 3 times bigger than of 1.5T. The calculated optimum TE value was consistent with TE values which were obtained from the maximum signal change for each TE. Conclusion : In this study, the 3.0T MRI was clearly more sensitive, about three times bigger than the 1.5T in detecting the susceptibility due to the deoxyhemoglobin level change in the functional MR imaging. So the 3.0T fMRI I ore useful than 1.5T.

  • PDF

A study on urban heat islands over the metropolitan Seoul area, using satellite images (원격탐사기법에 의한 도시열섬 연구)

  • ;Lee, Hyoun-Young
    • Journal of the Korean Geographical Society
    • /
    • v.40
    • /
    • pp.1-13
    • /
    • 1989
  • The brightness temperature from NOAA AVHRR CH 4 images was examined for the metropolitan Seoul area, the capital city of Korea, to detect the characteristics of the urban heat island for this study. Surface data from 21 meteorological stations were compared with the brightness temperatures Through computer enhancement techniques, more than 20 heat islands could be recognized in South Korea, with 1 km spatii resolution at a scale of 1: 200, 00O(Fig. 3, 4 and 6). The result of the analysis of AVHRR CH 4 images over the metropolitan Seoul area can be summerized as follows (1) The pattern of brightness temperature distribution in the metropolitan Seoul area shows a relatively strong temperature contrast between urban and rural areas. There is some indication of the warm brightness temperature zone characterrizing built-up area including CBD, densely populated residential district and industrial zone. The cool brightness temperature is asociaed with the major hills such as Bukhan-san, Nam-san and Kwanak-san or with the major water bodies such as Han-gang, and reservoirs. Although the influence of the river and reservoirs is obvious in the brightness temperauture, that of small-scaled land use features such as parks in the cities is not features such as parks in the cities is not apperent. (2) One can find a linerar relationshop between the brightenss temperature and air temperature for 10 major cities, where the difference between two variables is larger in big cities. Though the coefficient value is 0.82, one can estimate that factors of the heat islands can not be explained only by the size of the cities. The magnitude of the horizontal brightness temperature differences between urban and rural area is found to be greater than that of horizontal air temperature difference in Korea. (3) Also one can find the high heat island intensity in some smaller cities such as Changwon(won(Tu-r=9.0$^{\circ}$C) and Po-hang(Tu-r==7.1$^{\circ}$~)T. he industrial location quotient of Chang-won is the second in the country and Po-hang the third. (4) A comparision of the enhanced thermal infrared imageries in 1986 and 1989, with the map at a scale of 1:200, 000 for the meotropolitan Seoul area showes the extent of possible urbanization changes. In the last three years, the heat islands have been extended in area. zone characterrizing built-up area including (5) Although the overall data base is small, the data in Fig. 3 suggest that brightness tempeautre could ge utilized for the study on the heat island characteristics. Satellite observations are required to study and monitor the impact of urban heat island on the climate and environment on global scale. This type of remote sensing provides a meams of monitoring the growth of urban and suburban aeas and its impact on the environment.

  • PDF