• Title/Summary/Keyword: Intensity Modulated Radiotherapy

Search Result 166, Processing Time 0.022 seconds

Planning Aspects of Volumetric Modulated Arc Therapy and Intensity Modulated Radio therapy in Carcinoma Left Breast - A Comparative Study

  • Ekambaram, Varadharajan;Velayudham, Ramasubramanian;Swaminathan, Shiyama;Loganathan, Padmanabhan;Swaminathan, Vijaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1633-1636
    • /
    • 2015
  • Background: The advantages of Rapid Arc plans versus Intensity modulated radiotherapy plans for Carcinoma left breast were analyzed. Materials and Methods: In this study 20 Post mastectomy carcinoma left breast patients were analyzed. Both Intensity modulated Radiotherapy and Rapid Arc plans were generated for these patients. IMRT plans with 7 beams in an arc fashion and VMAT plans with two semi arcs were made to achieve 95% dose coverage to 100% volume. The plans were evaluated using Dose volume Histograms. Results: The mean Conformity and Homogeneity index in VMAT is found to be 1.05 and 0.065 respectively whereas in IMRT it was 1.07 and 0.069. The 20% volume of Heart received a mean dose of 960cGy in VMAT and 1300cGy in IMRT. The mean dose was 1236cGy in VMAT and 1870cGy in IMRT. The ipsilateral Lung received 3395cGy to 5% volume and 1840cGy to 20% volume on an average and the mean dose was 1205cGy in VMAT, while the same were found to be 3525cGy, 2012cGy and 1435cGy respectively in IMRT. The Contralateral Lung received a mean dose of 505cGy in VMAT and 553cGy in IMRT. The mean Monitor units in VMAT were 512MU and 1170MU in IMRT. The NTID in VMAT is $108.8{\times}10^5Gycm^3$ and $110.1{\times}10^5Gycm^3$ in IMRT. Conclusions: The target coverage, homogeneity and Conformity index were better in VMAT plans. The Ipsilateral Lung and heart dose were very less in VMAT plans. The Contralateral Lung dose and the Normal Tissue Integral Dose were also lesser in VMAT plans however the difference is not very appreciable. The MU in VMAT plans is almost 50% that of the IMRT plans which results in the reduction of treatment time. On the whole VMAT proves to be a better modality for treating Ca. Left Breast Patients.

Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: Penang General Hospital Experience

  • Phua, Chee Ee;Tan, Boon Seang;Tan, Ai Lian;Eng, Kae Yann;Ng, Bong Seng;Malik, Rozita Abdul;Ishak, Wan Zamaniah Wan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3287-3292
    • /
    • 2012
  • Purpose: To study the overall treatment time (OTT) and acute toxicity of intensity-modulated radiotherapy (IMRT) treatment for nasopharyngeal carcinoma (NPC). Methods: This retrospective study covered all NPC patients who underwent radical IMRT treatment at the Penang General Hospital from June 2011 to February 2012. Patients of any age and stage of disease with histologically proven diagnosis were included. Information was collected on patient demographics, clinical stage, treatment received, including any neoadjuvant and/or concurrent chemotherapy, acute toxity and completion of IMRT within the OTT. Results: A total of 26 NPC patients were treated with IMRT during the study period; 88.5% had stage III/IV disease. 45.2% received neo-adjuvant chemotherapy while 50.0% were given concurrent chemo-irradiation. All patients completed the treatment and 92.3% within the 7 weeks OTT. Xerostomia was present in all patients with 92.3% having grade 2. Severe grade III/IV acute toxicity occurred in 73.1% of patients, the commonest of which was oral mucositis (57.6%). This was followed by dysphagia which occurred in 53.8%, skin reactions in 42.3% and weight loss in 19.2%. However, haematological toxicity was mild with only one patient having leucopaenia. Conclusion: IMRT treatment for NPC is feasible in our center. More importantly, it can be delivered within the 7 weeks OTT in the majority of patients. Severe grade 3/4 toxicity is very common (73.1%) and thus maximal nutritional and analgesic support is required throughout the treatment.

Clinical performance of FractionLab in patient-specific quality assurance for intensity-modulated radiotherapy : a retrospective study

  • Oh, Se An;Kim, Sung Yeop;Park, Jaehyeon;Park, Jae Won;Yea, Ji Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.2
    • /
    • pp.108-115
    • /
    • 2022
  • Background: This study was aimed at comparing and analyzing the results of FractionLab (Varian/Mobius Medical System) with those of portal dosimetry that uses an electronic portal imaging device. Portal dosimetry is extensively used for patient-specific quality assurance (QA) in intensity-modulated radiotherapy (IMRT). Methods: The study includes 29 patients who underwent IMRT on a Novalis-Tx linear accelerator (Varian Medical System and Brain-LAB) between June 2019 and March 2021. We analyzed the multileaf collimator DynaLog files generated after portal dosimetry to evaluate the same condition using FractionLab. The results of the recently launched FractionLab at various gamma indices (0.1%/0.1 mm-1%/1 mm) are analyzed and compared with those of portal dosimetry (3%/3 mm). Results: The average gamma passing rates of portal dosimetry (3%/3 mm) and FractionLab are 98.1% (95.5%-100%) and 97.5% (92.3%-99.7%) at 0.6%/0.6 mm, respectively. The results of portal dosimetry (3%/3 mm) are statistically comparable with the QA results of FractionLab (0.6%/0.6 mm-0.9%/0.9 mm). Conclusion: This paper presents the clinical performance of FractionLab by the comparison of the QA results of FractionLab using portal dosimetry with various gamma indexes when performing patient-specific QA in IMRT treatment. Further, the appropriate gamma index when performing patient-specific QA with FractionLab is provided.

Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

  • Mani, Karthick Raj;Upadhayay, Sagar;Das, K.J. Maria
    • Radiation Oncology Journal
    • /
    • v.35 no.1
    • /
    • pp.90-100
    • /
    • 2017
  • Purpose: To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. Materials and Methods: We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. Results: The conformity index average of all patients followed by standard deviation (${\bar{x}}{\pm}{\sigma}_{\bar{x}}$) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were $1.72{\pm}0.56$, $1.67{\pm}0.57$, $1.83{\pm}0.65$, and $1.85{\pm}0.64$, and homogeneity index were $0.059{\pm}0.05$, $0.064{\pm}0.05$, $0.064{\pm}0.04$, and $0.064{\pm}0.05$. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Conclusion: Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

A Comparison between Portal Dosimetry and Mobius3D Results for Patient-Specific Quality Assurance in Radiotherapy

  • Kim, Sung Yeop;Park, Jaehyeon;Park, Jae Won;Yea, Ji Woon;Oh, Se An
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: The purpose of this study was to compare the clinical quality assurance results of portal dosimetry using an electronic portal imaging device, a method that is extensively used for patient-specific quality assurance, and the newly released Mobius3D for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: This retrospective study includes data from 122 patients who underwent IMRT and VMAT on the Novalis Tx and VitalBeam linear accelerators between April and June 2020. We used a paired t-test to compare portal dosimetry using an electronic portal imaging device and the average gamma passing rates of MobiusFX using log files regenerated after patient treatment. Results: The average gamma passing rates of portal dosimetry (3%/3 mm) and MobiusFX (5%/3 mm) were 99.43%±1.02% and 99.32%±1.87% in VitalBeam and 97.53%±3.34% and 96.45%±13.94% in Novalis Tx, respectively. Comparison of the gamma passing rate results of portal dosimetry (3%/3 mm) and MobiusFX (5%/3 mm as per the manufacturer's manual) does not show any statistically significant difference. Conclusions: Log file-based patient-specific quality assurance, including independent dose calculation, can be appropriately used in clinical practice as a second-check dosimetry, and it is considered comparable with primary quality assurance such as portal dosimetry.

Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

  • Mattes, Malcolm D.;Zhou, Ying;Berry, Sean L.;Barker, Christopher A.
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung $V_{20}$ (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum $D_{max}$ (13.6 vs. 38.9 Gy), bowel $D_{200cc}$ (7.3 vs. 23.1 Gy), femur $D_{50}$ (34.6 vs. 57.2 Gy), and genitalia $D_{max}$ (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus $D_{mean}$ (16.9 vs. 22.4 Gy), brachial plexus $D_5$ (57.4 vs. 61.3 Gy), bladder $D_5$ (26.8 vs. 36.5 Gy), and femur $D_{50}$ (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients.

Dosimetric comparison of coplanar and non-coplanar volumetric-modulated arc therapy in head and neck cancer treated with radiotherapy

  • Gayen, Sanjib;Kombathula, Sri Harsha;Manna, Sumanta;Varshney, Sonal;Pareek, Puneet
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.138-147
    • /
    • 2020
  • Purpose: To evaluate the dosimetric variations in patients of head and neck cancer treated with definitive or adjuvant radiotherapy using optimized non-coplanar (ncVMAT) beams with coplanar (cVMAT) beams using volumetric arc therapy. Materials and Methods: Twenty-two patients of head and neck cancer that had received radiotherapy using VMAT in our department were retrospectively analyzed. Each of the patients was planned using coplanar and non-coplanar orientations using an optimized couch angle and fluences. We analyzed the Conformity Index (CIRTOG), Dose Homogeneity Index (DHI), Heterogeneity Index (HIRTOG), low dose volume, target and organs-at-risk coverage in both the plans without changing planning optimization parameters. Results: The prescription dose ranged from 60 Gy to 70 Gy. Using ncVMAT, CIRTOG, DHI and HIRTOG, and tumor coverage (ID95%) had improved, low dose spillage volume in the body V5Gy was increased and V10Gy was reduced. Integral dose and intensity-modulated radiation therapy factor had increased in ncVMAT. In the case of non-coplanar beam arrangements, maximum dose (Dmax) of right and left humeral head were reduced significantly whereas apex of the right and left lung mean dose were increased. Conclusion: The use of ncVMAT produced better target coverage and sparing of the shoulder and soft tissue of the neck as well as the critical organ compared with the cVMAT in patients of head and neck malignancy.

The Role of Modern Radiotherapy Technology in the Treatment of Esophageal Cancer

  • Moon, Sung Ho;Suh, Yang-Gun
    • Journal of Chest Surgery
    • /
    • v.53 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • Radiation therapy (RT) has improved patient outcomes, but treatment-related complication rates remain high. In the conventional 2-dimensional and 3-dimensional conformal RT (3D-CRT) era, there was little room for toxicity reduction because of the need to balance the estimated toxicity to organs at risk (OARs), derived from dose-volume histogram data for organs including the lung, heart, spinal cord, and liver, with the planning target volume (PTV) dose. Intensity-modulated RT (IMRT) is an advanced form of conformal RT that utilizes computer-controlled linear accelerators to deliver precise radiation doses to the PTV. The dosimetric advantages of IMRT enable better sparing of normal tissues and OARs than is possible with 3D-CRT. A major breakthrough in the treatment of esophageal cancer (EC), whether early or locally advanced, is the use of proton beam therapy (PBT). Protons deposit their highest dose of radiation at the tumor, while leaving none behind; the resulting effective dose reduction to healthy tissues and OARs considerably reduces acute and delayed RT-related toxicity. In recent studies, PBT has been found to alleviate severe lymphopenia resulting from combined chemo-radiation, opening up the possibility of reducing immune suppression, which might be associated with a poor prognosis in cases of locally advanced EC.

Intensity-modulated radiotherapy for stage I glottic cancer: a short-term outcomes compared with three-dimensional conformal radiotherapy

  • Cho, Ick Joon;Chung, Woong-Ki;Lee, Joon Kyoo;Lee, Min-Cheol;Paek, Jayeong;Kim, Yong-Hyub;Jeong, Jae-Uk;Yoon, Mee Sun;Song, Ju-Young;Nam, Taek-Keun;Ahn, Sung-Ja;Lee, Dong Hoon;Yoon, Tae Mi;Lim, Sang-Chul
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.271-278
    • /
    • 2019
  • Purpose: To investigate the differences in treatment outcomes between two radiation techniques, intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT). Materials and Methods: We retrospectively analyzed 160 (IMRT = 23, 3DCRT = 137) patients with stage I glottic cancer treated from January 2005 through December 2016. The IMRT was performed with TomoTherapy (16 patients), volumetric-modulated arc therapy (6 patients), and step-and-shoot technique (1 patient), respectively. The 3DCRT was performed with bilateral parallel opposing fields. The median follow-up duration was 30 months (range, 31 to 42 months) in the IMRT group and 65 months (range, 20 to 143 months) in the 3DCRT group. Results: The 5-year overall survival and 3-year local control rates of the 160 patients were 95.7% and 91.4%, respectively. There was no significant difference in 3-year local control rates between the IMRT and 3DCRT groups (94.4% vs. 91.0%; p = 0.587). Thirteen of 137 patients in the 3DCRT group had recurrences. In the IMRT group, one patient had a recurrence at the true vocal cord. Patients treated with IMRT had less grade 2 skin reaction than the 3DCRT group, but this had no statistical significance (4.3% vs. 21.2%; p = 0.080). Conclusion: IMRT had comparable outcomes with 3DCRT, and a trend of less acute skin reaction in stage I glottic cancer patients.

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF