• Title/Summary/Keyword: Intelligent vehicles

Search Result 770, Processing Time 0.026 seconds

Designing a Vehicles for Open-Pit Mining with Optimized Scheduling Based on 5G and IoT

  • Alaboudi, Abdulellah A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancement coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. To improve the convergence, distribution, and diversity of the classic, rapidly non-dominated genetic trial algorithm, to solve limited high-dimensional multi-objective problems, we propose a decomposition-based restricted genetic algorithm for dominance (DBCDP-NSGA-II).

Autonomous Intelligent Cruise Control Using the Adaptive Fuzzy Control (퍼지 적응제어를 이용한 차량간격 제어 알고리즘에 관한 연구)

  • 장광수;최재성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.175-186
    • /
    • 1996
  • In Advanced Vehicle Control System(AVCS), Autonomous Intelligent Cruise Control(AICC) is generally understood to be a system that can be achieved in the near future without the demanding infrastructure components and technoloties. AICC is an automatic vehicle following system with no human engagement in the longitudinal vehicle direction. This paper presents a fuzzy control algorithm to develop the AICC system. The control performance was studied information of vehicles using computer simulations. The most improtant aspects of the work reported here are the adoption of the fuzzy adaptive control law, and the use of filtering concept to reduce the slinky effects that may appear in a formation of vehicles equipped with AICC systems. The simulation results demonstrate the effectiveness of the fuzzy adaptive AICC system and its beneficial effects on traffic flow.

  • PDF

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

Artificial Traffic Light using Fuzzy Rules and Neural Network

  • Hong, You-Sik;Jin, Hyun-Soo;Jeong, Kwang-Son;Park, Chong-Kug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.591-595
    • /
    • 1998
  • This paper proposes a new concept of optimal shortest path algorithm which reduce average vehicle wating time and improve average vehicle speed, Electro sensitive traffic system can extend the traffic cycle when three are many vehicles on the road or it can reduce the traffic cycle when there are small vehicles on the road. But electro sensitive traffic light system doesn't control that kind of function when the average vehicle speed is 10km -20km. Therefore, in this paper to reduce vehicle waiting time we developed design of traffic cycle software tool that can arrive destinination as soon as possible using optimal shortest pass algorithm. Computer simulation result proved 10%-32% reducing average vehicle wating time and average vehicle speed which can select shortest route using built in G.P.S. vehicle is better than not being able to select shortest route function.

  • PDF

Multi-vehicle Route Selection Based on an Ant System

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • This paper introduces the multi-vehicle routing problem(MRP) which is different from the traveling sales problem(TSP), and presents the ant system(AS) applied to the MRP. The proposed MRP is a distributive model of TSP since many vehicles are used, not just one salesman in TSP and even some constraints exist. In the AS, a set of cooperating agents called vehicles cooperate to find good solutions to the MRP. To make the proposed MRP extended more, Tokyo city model(TCM) is proposed. The goal in TCM is to find a set of routes that minimizes the total traveling time such that each vehicle can reach its destination as soon as possible. The results show that the AS can effectively find a set of routes minimizing the total traveling time even though the TCM has some constraints.

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

Integrating GIS, GPS, and Optimization Technologies for Pick-up/Delivery Service (소포 집배송 서비스를 위한 GIS, GPS 및 최적화 기술의 통합)

  • Jung Hoon;Lim Seung-Kil
    • Korean Management Science Review
    • /
    • v.21 no.3
    • /
    • pp.115-127
    • /
    • 2004
  • In this paper, we describe an intelligent monitoring and control system for pick-up/delivery service. This system applies geographical information system(GIS), global positioning system(GPS) and wireless communication technologies for managing pick-up/delivery operations more effectively. It consists of three subsystems, pick-up/delivery sequence planning system, pick-up/delivery monitoring system, and PDA execution system. Pick-up/delivery sequence planning system generates routes and schedules for pick-up/delivery using GIS and optimization techniques. Pick-up/delivery monitoring system monitors current positions of vehicles and actual pick-up/delivery results as compared with planned routes and visit times, while PDA execution system transmits information for vehicles positions and actual pick-up/delivery results using GPS and wireless communication technologies. The intelligent monitoring and control system is currently being used for the pick-up parcel service in a local post office of Korea Post.

User Authentication Risk and Countermeasure in Intelligent Vehicles (지능형 자동차의 사용자 인증에 대한 위협 및 대응 기법)

  • Kim, Seung-Hwan;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • Intellgent Vehles network capabilities can cause a lots of security issues such as data hacking, privacy violation, location tracking and so on. Some possibilities which raise a breakdown or accident by hacking vehicle operation data are on the increase. In this paper, we propose a security module which has user authentication and encryption functionalities and can be used for vehicle network system.

Design of an intelligent steering control system for four-wheel electric vehicles without steering mechanism (조향 기구가 없는 4륜 전기 구동 차량의 지능형 조향 제어 시스템의 설계)

  • 변상진;박명관;서일홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.12-24
    • /
    • 1997
  • An intelligent steering control system is designed for the steering control of a 4 wheel drive (4WD) electric vehicles without steering mechanism, where the vehicle is assumed to have 3 degree of freedom and input-output feedback linearization is employed. Especially, a fuzzy-rule-based side force estimator is suggested to avoid uncertain highlynonlinearexpression sof relations between side forces and their factors. Also, aneural-network-based predictive compensator is additionally utilized for the vehicle model to be correctly controlled with unstructured uncertainties. The proposed overall control system is numerically shown to be robust against drastic change of the external environments.

  • PDF

Wireless Traffic Light using Artificial Intelligence

  • Hong, You-Sik;Kim, Chong-Soo;Kim, Chang-Kyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.251-257
    • /
    • 2003
  • In this paper, we wish to construct a optimal traffic cycle using wire remote control. if police vehicle or ambulance suddenly enter the traffic Intersection, it will increase the traffic accident. In this paper, wireless traffic light use the radio traffic control signal and research about the hardware manufacture to check special detectors on urgency vehicles may safety and rapidly enter traffic intersection. Also, this paper present a traffic signal control conditions that analyzes different traffic intersection flows in cases of saturated flows, where the real traffic volume demand is large and the capacity constraints of bottlenecks have significant effects on the flow patterns. Through computer simulation this wireless traffic light has been proven to be much more safety and efficient than fixed traffic signal light which does not consider emergency vehicles for safety escort.