• Title/Summary/Keyword: Intelligent vehicle monitoring

Search Result 72, Processing Time 0.033 seconds

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

Development of Vehicle Environment for Real-time Driving Behavior Monitoring System (실시간 운전 특성 모니터링 시스템을 위한 차량 환경 개발)

  • Kim, Man-Ho;Son, Joon-Woo;Lee, Yong-Tae;Shin, Sung-Heon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs) that offer a significant enhancement of safety and convenience to drivers and passengers. However, unsuitable design of HMI (Human Machine Interface) must increase driver distraction and workload, which in turn increase the chance of traffic accidents. Distraction in particular often occurs under a heavy driving workload due to multitasking with various electronic devices like a cell phone or a navigation system while driving. According to the 2005 road traffic accidents in Korea report published by the ROad Traffic Authority (ROTA), more than 60% of the traffic accidents are related to driver error caused by distraction. This paper suggests the structure of vehicle environment for real-time driving behavior monitoring system while driving which is can be used the driver workload management systems (DWMS). On-road experiment results showed the feasibility of the suggested vehicle environment for driving behavior monitoring system.

Fuzzy Sensor Algorithm for Traffic Monitoring applied by the Analytic Hierachy Processs (AHP기법을 활용한 교통량조사 퍼지센서 알고리즘)

  • Jin, Hyun-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.276-285
    • /
    • 2008
  • Traffic monitoring method is mainly loop detector and piezo sensor. But this method is only detecting the number of vehicle. Monitoring traffic volume is not checking the number of vehicle but checking the length of access road, width of road, number of passing people,passing vehicle,delayed vehicle. The traffic signal control cycle is not fixed by only passing vehicle number but all related traffic proposal. This paper proposed selecting common characteristic out of each unrelated traffic proposal through Analytic Hierachy Process and this characteristic is applied to compose fuzzy sensor algorithm which find out new traffic volume concept of confusion degree. The accumulated delayed vehicle time is shorter in new fuzzy sensor algorithm applied by AHP than other traffic method

  • PDF

A Study on Adaptive Cruise Control and Monitoring System for Intelligent Vehicle (지능형 자동차를 위한 적응 주행제어 및 감시시스템에 관한 연구)

  • Yang, Seung-Hyun;Lee, Suk-Won
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.909-910
    • /
    • 2006
  • In this paper, the transfer function to the vehicle is derived from using system identification algorithm in connection with the driving vehicle. We design the adaptive cruise controller using the derived transfer function, and make it possible to monitoring and control the vehicle in real time using embedded system and technology of Internet.

  • PDF

Vision Based Traffic Data Collection in Intelligent Transportation Systems

  • Mei Yu;Kim, Yong-Deak
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.773-776
    • /
    • 2000
  • Traffic monitoring plays an important role in intelligent transportation systems. It can be used to collect real-time traffic data concerning traffic flow. Passive shadows resulted from roadside buildings or trees and active shadows caused by moving vehicles, are one of the factors that arise errors in vision based vehicle detection. In this paper, a land mark based method is proposed for vehicle detection and shadow rejection, and finally vehicle count are achieved based on the land mark detection method.

  • PDF

Real Time Macroscopic Traffic Flow Monitoring Using Acceleration Noise (가속소음을 활용한 실시간 거시 교통류 모니터링)

  • Eom, Ki-Jong;Lee, Chung-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2009
  • The acceleration noise is valuable index to monitor traffic stability. However, the previous study was performed for the acceleration noise of individual vehicle. The consideration of the acceleration noise for vehicle in the network has not been studied yet. This paper proposes a new macroscopic traffic flow monitoring method based on applying network acceleration noise.

  • PDF

A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator (가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델)

  • 김성수;손병석;송금정;정상윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

Intelligent Vehicle Management Using Location-Based Control with Dispatching and Geographic Information

  • Kim Dong-Ho;Kim Jin-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.249-252
    • /
    • 2004
  • The automatic determination of vehicle operation status as well as continuous tracking of vehicle location with intelligent management is one of major elements to achieve the goals. Especially, vehicle operation status can only be analyzed in terms of expert experiences with real-time location data with scheduling information. However the scheduling information of individual vehicle is very difficult to be interpreted immediately because there are hundreds of thousand vehicles are run at the same time in the national wide range workplace. In this paper, we propose the location-based knowledge management system(LKMs) using the active trajectory analysis method with routing and scheduling information to cope with the problems. This system uses an inference technology with dispatching and geographic information to generate the logistics knowledge that can be furnished to the manager in the central vehicle monitoring and controlling center.

  • PDF

Generalized Sidelobe Canceler for TPMS Interference Cancellation (TPMS 간섭제거를 위한 Generalized Sidelobe Canceler)

  • Park, Cheol;Hwang, Suk-Seung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.663-668
    • /
    • 2012
  • A TPMS(Tire Pressure Monitoring System) is a wireless communication system designed to monitor the pressure and temperature of pneumatic tires of a vehicle. In order to provide the aid in protecting a driver, this system reports tire pressure information to the driver of the vehicle. Since the wireless communication technique should be employed to transmit the TPMS data from each tire to signal processing unit in the vehicle, it suffers from interference signals from external electrical or electronics equipments. In this paper, we propose the TPMS interference cancellation technique based on GSC(Generalized Sidelobe Canceler), which does not have only the excellent performance like MVDR(Minimum-Variance-Distortionless-Response) but also has the low computational complexity comparing with MVDR. The performance of interference suppression is conformed by computer simulation examples.

A Feasibility Study on the Energy Harvesting Technology for the Real-Time Monitoring System of Intelligent Railroad Vehicles (철도차량 모니터링 시스템 개발을 위한 자가발전 기술 연구)

  • Kim, Jae-Hoon;Lee, Jae-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.955-960
    • /
    • 2011
  • This study was aimed at investigating the applicability of energy harvesting technologies, which are regarded as new and renewable energy sources for real-time/wireless monitoring of intelligent railroad vehicles. The surrounding energy generated in a normal operating environment was monitored using a high-speed railroad vehicle in operation. This monitoring was performed in an attempt to evaluate the effectives of energy harvesting and the applicability of energy-harvesting-monitoring technologies under the conditions in which thermal energy and vibration energy are generated.