• Title/Summary/Keyword: Intelligent radio

Search Result 246, Processing Time 0.028 seconds

A 60-GHz LTCC SiP with Low-Power CMOS OOK Modulator and Demodulator

  • Byeon, Chul-Woo;Lee, Jae-Jin;Kim, Hong-Yi;Song, In-Sang;Cho, Seong-Jun;Eun, Ki-Chan;Lee, Chae-Jun;Park, Chul-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.229-237
    • /
    • 2011
  • In this paper, a 60 GHz LTCC SiP with low-power CMOS OOK modulator and demodulator is presented. The 60 GHz modulator is designed in a 90-nm CMOS process. The modulator uses a current reuse technique and only consumes 14.4-mW of DC power in the on-state. The measured data rate is up to 2 Gb/s. The 60 GHz OOK demodulator is designed in a 130nm CMOS process. The demodulator consists of a gain boosting detector and a baseband amplifier, and it recovers up to 5 Gb/s while consuming low DC power of 14.7 mW. The fabricated 60 GHz modulator and demodulator are fully integrated in an LTCC SiP with 1 by 2 patch antenna. With the LTCC SiP, 648 Mb/s wireless video transmission was successfully demonstrated at wireless distance of 20-cm.

Next-Generation Intelligent Radio Monitoring System (차세대 지능형 전파감시 시스템)

  • Yim, Hyun-Seok;Moon, Jin-Ho;Kim, Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.846-851
    • /
    • 2008
  • With rapid development of communication industry, the kinds of communication service vary. According to the increasing use of radio waves, the intelligent and effective radio monitoring system needs to be developed, which is replaced for previous radio monitoring system. Next-generation intelligent radio monitoring system based on ITU-R, Rule of wireless facilities, and Radio Waves Act is used, and which can accurately and effectively function as effective radio monitoring system through spectrum analysis of channel power, frequency deviation, offset, and an occupied frequency bandwidth(99% or x-dB), about the analog and digital signal in On-Air of V/UHF bandwidth. Main function of the system has an radio quality measurement, unwanted electromagnetic signals (spurious, harmonic) measurement, high-speed spectrum measurement, frequency usage efficiency investigation, illegal radio exploration, working monitoring, In this paper, we proposes radio quality measurement, high-speed spectrum measurement of next-generation intelligent radio monitoring system.

Performance Analysis of Cognitive Radio Cooperative Spectrum Sensing for Intelligent Transport System (지능형 교통 시스템을 위한 인지무선 협력 스펙트럼 센싱의 성능 분석)

  • Kim, Jin-Young;Baek, Myung-Kie
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.110-120
    • /
    • 2008
  • Cognitive Radio (CR) technology is proposed for using the unused spectrum band efficiently because of the spectrum scarcity problems. Spectrum sensing technology is one of the key challenge issues in cognitive radio technologies, which enables unlicensed users to identify and utilize vacant spectrum resource allocated to primary users. In this paper, the cooperative spectrum sensing technologies apply the ITS(Intelligent Transport System) and performance of signal detection analyzes. Then, we utilize the OR-rule and AND-rule for the cooperative signal detection. These data fusion rules improve the performance and reliability of the signal detection.

  • PDF

An Energy-efficient MAC Protocol in Cognitive Radio Environment (Cognitive Radio 환경을 고려한 에너지 효율적인 MAC 프로토콜)

  • Kim, Byung-Boo;Rhee, Seung-Hyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.81-91
    • /
    • 2008
  • In mobile wireless communications, there is a new approach that uses the lacking spectrum efficiently. A cognitive radio is a device that can changes its transmitter parameters based on interaction with the environment in which it operates. At present, the wireless communication standard for wireless device contains power-saving modes or energy efficient mechanisms which cuts off the power of transmitter and receiver for power-saving. However, in cognitive radio environment, every device has the Quiet Period for searching channel and existing energy-saving method is not appropriate to be adjust to cognitive radio environment. In this paper, we propose an energy-efficient MAC protocol of mobile device in cognitive radio environment and prove the improvement of proposed method.

  • PDF