• Title/Summary/Keyword: Intelligent machining

Search Result 83, Processing Time 0.027 seconds

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

A Smart Machining System (스마트 가공 시스템)

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • Globalization, unpredictable markets, increased products customization and frequent changes in products, production technologies and machining systems have become a complexity in today's manufacturing environment. One key strategy for coping with the evolution of this situation is to develop or apply an enable technology such as intelligent manufacturing. Intelligent manufacturing system (IMS) is characterized by decentralized, distributed, networked compositions of heterogeneous and autonomous systems. The model of IMS is inherited from the organization of the living systems in biology and nature so that the manufacturing system has the advanced characteristics inspired from biology such as self-adaptation, self-diagnosis, and selfhealing. To prove this concept, an innovative system with applying the advanced information and communication technology such as internet of things, cognitive agent are proposed to integrate, organize and allocate the machining resources. Innovative system is essential for modern machining system to flexibly and quickly adapt to new challenges of manufacturing environment.

Building a Machining Knowledge Base for Intelligent Machine Tools (지능공작기계를 위한 가공 지식의 지식베이스 구성 및 운영)

  • Lee, Seung-Woo;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.79-85
    • /
    • 2007
  • Intelligent machines respond to external environments on the basis of decisions that are made by sensing the changes in the environment and analyzing the obtained information. This study focuses on the construction of a knowledge base which enables decision making with that information. Approximately 70% of all errors that occur in machine tools are caused by thermal error. In order to proactive deal with these errors, a system which measures the temperature of each part and predicts and compensates the displacement of each axis has been developed. The system was built in an open type controller to enable machine tools to measure temperature changes and compensate the displacement. The construction of a machining knowledge base is important for the implementation of intelligent machine tools, and is expected to be applicable to the network based intelligent machine tools which look set to appear sooner or later.

A Study on Laser-Assisted Machining Process of Silicon Nitride (질화규소의 Laser-Assisted Machining 공정에 관한 연구)

  • Lim, Se-Hwan;Lee, Jae-Hoon;Shin, Dong-Sig;Kim, Jong-Do;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • In this paper, laser-assisted machining(LAM) has been employed to machine hot isostatically pressed (HIPed) Si3N4 work pieces. Due to little residual flaws and porosity, HIPed $Si_3N_4$ work pieces are more difficult to machine compared to normally sintered $Si_3N_4$ workpieces. In LAM, the intense energy of laser was used to enhance machinability by locally heating the workpiece and thus reducing yield strength. In experiments, the laser power ranges from 200W to 800W and the diameter of work pieces is 16mm. While machining, the surface temperature was kept nearly constant by laser heating except for a short period of rise time of max. 58 seconds. Results showed as feed rate increases the surface temperature of $Si_3N_4$ workpieces decreases slightly, whereas the effect of depth of cut is disregardable. With a laser power of 800W, achievable maximal depth of cut as 0.7mm and feed rate was 0.03mm/rev.

Automated process plan and an intelligent NC data generation for unmaned machining of mould die (모울드 금형의 무인가공을 위한 자동공정계획 몇 지능형 NC 데이터 생성)

  • 유우식;김대현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.143-155
    • /
    • 1996
  • Presented in this paper are a CAPP(Computer Automated Process Planning) scheme and a generating method of intelligent NC data for unmaned machining of mold die. Mold die surfaces usually have free-formed geometry of complex shapes. So it is easy to overcut the die surface and to overload the cutting tools. It takes tens of hours to prepare process plans and to generate NC data for each processes. Therefore a classification of unit machining operation(UMO) for mold die manufacture, a backward recursive capp algorithm and a generating method of intelligent NC data are presented in this paper in order to provide a unmaned machining architecture of mold die.

  • PDF

Development of High Speed/Intelligent Machining System by PLUG/PLAY Method (PLUG/PLAY 방식 고속 지능형 가공 시스템의 연구)

  • 윤원수;김찬봉;권용찬;한기상;양희구;김세광;김주한;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.483-488
    • /
    • 2000
  • This study aims at developing the high speed/intelligent machining system using the plug/play method of an open architecture controller. The plug/play technology by the application Specific Function (ASF), can readily implement the open architecture controller into various machining system or other automatic devices. The plug/play method integrates the ASF, visual builder, controller OS technology. This study, as an example, presents a schematic diagram for integration of an open architecture CNC and individual component technology for the high speed/intelligent machining system.

  • PDF

Cutting Characteristics on Rake Angle in Laser-Assisted Machining of Silicon Nitride (질화규소의 예열선삭가공시 경사각에 따른 절삭특성)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Lim, Se-Hwan;Kim, Jong-Do;Lee, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2009
  • In the last few years, lasers have found new applications as tools for ceramic machining which is laser-assisted machining(LAM). LAM process for the machining of difficult-to-machine materials such as structural ceramics, has recently been studied on silicon nitride workpiece for a wide range of operating condition. However, there have been few studies on rake angle in LAM process. In this paper we analyzed difference of machinability between positive and negative rake angle in tools. We have obtained interesting results that we could eliminate chattering, lower specific cutting and cutting ratio in case of positive rake angle. The results suggest that positive rake angled tools can make more plastic deformation and stable cutting of silicon nitride in comparison with negative rake angled one.

Investigation of the Surface Temperature and Cutting Characteristics of Silicon Nitride in Laser-Assisted Machining (Laser-assisted machining에서 질화규소 시편의 표면온도와 절삭특성에 관한 연구)

  • Im, Se-Hwan;Lee, Je-Hun;Sin, Dong-Sik;Kim, Jong-Do;Kim, Ju-Hyeon
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • In laser-assisted machining (LAM), laser beam is used to locally increase the temperature of a workpiece and thus to enhance the machinability. In order to set the temperature of the material removal area of a workpiece at an optimal value, process parameters, such as laser power, feed rate, and rotational velocity, have to be carefully controlled. In this work, the effects of laser power and feed rate on the temperature distribution of a silicon nitride rotating at a constant velocity were experimentally investigated. Using a pyrometer, temperatures at various locations of the silicon nitride were measured both in circumferential and axial directions. The measured temperatures were fitted to a quadratic equation to approximate the temperature at the cutting location. The machining results showed that cutting force and tool wear were decreased when the temperature at the cutting location was increased.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

A Concept of Self-Optimizing Forming System (자율 최적 성형 공정 시스템 개발)

  • Park, Hong-Seok;Hoang, Van-Vinh;Song, Jun-Yeob;Kim, Dong-Hoon;Le, Ngoc-Tran
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.292-297
    • /
    • 2013
  • Nowadays, a strategy of the self-optimizing machining process is an imperative approach to improve the product quality and increase productivity of manufacturing systems. This paper presents a concept of self-optimizing forming system that allows the forming system automatically to adjust the forming parameters online for guarantee the product quality and avoiding the machine stop. An intelligent monitoring system that has the functions of observation, evaluation and diagnostic is developed to evaluate the pully quality during forming process. Any abnormal variation of forming machining parameters could be detected and adjusted by an intelligent control system aiming to maintain the machining stability and the desired product quality. This approach is being practiced on the pully forming machine for evaluating the efficiency of the proposed strategy.