• Title/Summary/Keyword: Intelligent information technology

Search Result 2,345, Processing Time 0.028 seconds

A Study on Context Aware Vertical Handover Scheme for Supporting Optimized Flow Multi-Wireless Channel Service based Heterogeneous Networks (이기종 망간의 최적화된 플로우 기반 다중 무선 채널 지원을 위한 상황인지 수직핸드오버 네트워크 연구)

  • Shin, Seungyong;Park, Byungjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, multimedia streaming service has been activated, and the demand for high-quality multimedia convergence contents services is predicted to increase significantly in the future. The issues of the increasing network load due to the rise of multimedia streaming traffic must be addressed in order to provide QoS guaranteed services. To do this, an efficient network resource management and mobility support technologies are needed through seamless mobility support for heterogeneous networks. Therefore, in this paper, an MIH technology was used to recognize the network situation information in advance and reduce packet loss due to handover delays, and an ACLMIH-FHPMIPv6 is designed that can provide an intelligent interface through introducing a hierarchical mobility management technique in FPMIPv6 integrated network.

An Analysis of the Attitude Estimation Errors Caused by the Deflection of Vertical in the Initial Alignment (초기정렬에서 수직편향으로 인한 자세 추정 오차 분석)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.235-243
    • /
    • 2022
  • In this paper, in the case of an inertial navigation system, the posture estimation error in the initial alignment due to vertical deflection is analyzed. Posture estimation error due to DOV was theoretically analyzed based on the speed and posture error of INS. Simulations were performed to verify the theoretical grinding, and the results were in good agreement. For example, in the case of η=20", an alignment error of ϕN=0.00287°, ϕU=0.00196° occurred, and in the case of 𝜉=20", an error of ϕE= -0.00286° occurred. Through this, it was confirmed that the vertical posture error caused by the DOV occurred as a coupling characteristic of the INS posture error. It has been shown that an additional posture error may occur due to the DOV, which was not considered in the existing INS alignment, which means that correction for the DOV must be considered when applying high-precision INS.

Design of Robot Arm for Service Using Deep Learning and Sensors (딥러닝과 센서를 이용한 서비스용 로봇 팔의 설계)

  • Pak, Myeong Suk;Kim, Kyu Tae;Koo, Mo Se;Ko, Young Jun;Kim, Sang Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.221-228
    • /
    • 2022
  • With the application of artificial intelligence technology, robots can provide efficient services in real life. Unlike industrial manipulators that do simple repetitive work, this study presented design methods of 6 degree of freedom robot arm and intelligent object search and movement methods for use alone or in collaboration with no place restrictions in the service robot field and verified performance. Using a depth camera and deep learning in the ROS environment of the embedded board included in the robot arm, the robot arm detects objects and moves to the object area through inverse kinematics analysis. In addition, when contacting an object, it was possible to accurately hold and move the object through the analysis of the force sensor value. To verify the performance of the manufactured robot arm, experiments were conducted on accurate positioning of objects through deep learning and image processing, motor control, and object separation, and finally robot arm was tested to separate various cups commonly used in cafes to check whether they actually operate.

A Specification-Based Methodology for Data Collection in Artificial Intelligence System (명세 기반 인공지능 학습 데이터 수집 방법)

  • Kim, Donggi;Choi, Byunggi;Lee, Jaeho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.479-488
    • /
    • 2022
  • In recent years, with the rapid development of machine learning technology, research utilizing machine learning has been actively conducted in fields such as cognition, reasoning and judgment, and action among various technologies constituting intelligent systems. In order to utilize this machine learning, it is indispensable to collect data for learning. However, the types of data generated vary according to the environment in which the data is generated, and the types and forms of data required are different depending on the learning model to be used for machine learning. Due to this, there is a problem that the existing data collection method cannot be reused in a new environment, and a specialized data collection module must be developed each time. In this paper, we propose a specification-based methology for data collection in artificial intelligence system to solve the above problems, ensure the reusability of the data collection method according to the data collection environment, and automate the implementation of the data collection function.

Study of Necessity of Advanced Integrated Digital Engineering and Management Tools (선진통합형 디지털 엔지니어링 및 경영 도구의 필요성 연구)

  • Luke (Yang Ouk) Kim;Kyung Ho Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • How the port, shipping, shipbuilding, and vender industries in Korea can have a seamless value chain through their digitally smooth cooperation by applying the latest information and communications technology through the "4th industrial revolution" was examined. Also considered was the proposition that the value chain should be a smart, seamless value chain among industries with successful hyperconnection. Their cooperative relationships were defined, and the crucial elements for the sustainable development of these industries were considered. As a result, the direction for achieving environmental, social, and governance management by realizing decarbonization through today's digitalization could be studied. In particular, the importance of digitization as a way to respond to the future market from the perspective of small and medium-sized enterprises and the role of digitization realized by small and medium-sized equipment companies in the overall industry were examined. The results simultaneously show the state of linkage between industries and the reason why the value chain must maintain a smooth relationship. In addition, using the lessons learned from recent failure cases from the Korean shipbuilding industry as a cornerstone, the direction for creating a strategic pathway for intelligent connection was investigated.

MLP Based Real-Time Gravity Disturbance Compensation in INS Embedded Computer (다층 레이어 퍼셉트론 기반 INS 내장형 컴퓨터에서의 실시간 중력교란 보상)

  • Hyun-seok Kim;Hyung-soo Kim;Yun-hyuk Choi;Yun-chul Cho;Chan-sik Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.674-684
    • /
    • 2023
  • In this paper, a real-time prediction technique for gravity disturbances is proposed using a multi-layer perceptron (MLP) model. To select a suitable MLP model, 4 models with different network sizes were designed to compare the training accuracy and execution time. The MLP models were trained using the data of vehicle moving along the surface of the sea or land, including their positions and gravity disturbance. The gravity disturbances were calculated using the 2160th degree and order EGM2008 with SHM. Among the models, MLP4 demonstrated the highest training accuracy. After training, the weights and biases of the 4 models were stored in the embedded computer of the INS to implement the MLP network. MLP4 was found to have the shortest execution time among the 4 models. These research results are expected to contribute to improving the navigation accuracy of INS through gravity disturbance compensation in the future.

Research on the introduction and use of Big Data for trade digital transformation (무역 디지털 트랜스포메이션을 위한 빅데이터 도입 및 활용에 관한 연구)

  • Joon-Mo Jung;Yoon-Say Jeong
    • Korea Trade Review
    • /
    • v.47 no.3
    • /
    • pp.57-73
    • /
    • 2022
  • The process and change of convergence in the economy and industry with the development of digital technology and combining with new technologies is called Digital Transformation. Specifically, it refers to innovating existing businesses and services by utilizing information and communication technologies such as big data analysis, Internet of Things, cloud computing, and artificial intelligence. Digital transformation is changing the shape of business and has a wide impact on businesses and consumers in all industries. Among them, the big data and analytics market is emerging as one of the most important growth drivers of digital transformation. Integrating intelligent data into an existing business is one of the key tasks of digital transformation, and it is important to collect and monitor data and learn from the collected data in order to efficiently operate a data-based business. In developed countries overseas, research on new business models using various data accumulated at the level of government and private companies is being actively conducted. However, although the trade and import/export data collected in the domestic public sector is being accumulated in various types and ranges, the establishment of an analysis and utilization model is still in its infancy. Currently, we are living in an era of massive amounts of big data. We intend to discuss the value of trade big data possessed from the past to the present, and suggest a strategy to activate trade big data for trade digital transformation and a new direction for future trade big data research.

Security Measures in Response to Future Warfare and Changes in the Network Environment (미래전과 네트워크 환경 변화에 따른 보안대책)

  • Donghan Oh;Kwangho Lee
    • Convergence Security Journal
    • /
    • v.21 no.4
    • /
    • pp.49-57
    • /
    • 2021
  • The 4th industrial revolution will develop the network environment of future warfare through the increase of IoT devices, individual warrior platforms, the operation of manned and unmanned weapon systems, intelligent command post. They are leading to the weapon system combined with hundreds or thousands of sensors will be used for surveillance and reconnaissance, electronic warfare, and deception operations on the battlefield. This change to the environment brings superiority in operational performance on the battlefield, but if the weapon system is exposed to the outside, it will lead to fatal results. In this paper, we analyze the network environment that is changing in the future warfare environment, focusing on the currently used network. In addition, it considers information security issues that must correspond to the evolving network technology and suggests various security measures to suggest the direction our military should take in the future.

Comparative Analysis of ViSCa Platform-based Mobile Payment Service with other Cases (스마트카드 가상화(ViSCa) 플랫폼 기반 모바일 결제 서비스 제안 및 타 사례와의 비교분석)

  • Lee, June-Yeop;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.163-178
    • /
    • 2014
  • Following research proposes "Virtualization of Smart Cards (ViSCa)" which is a security system that aims to provide a multi-device platform for the deployment of services that require a strong security protocol, both for the access & authentication and execution of its applications and focuses on analyzing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service by comparing with other similar cases. At the present day, the appearance of new ICT, the diffusion of new user devices (such as smartphones, tablet PC, and so on) and the growth of internet penetration rate are creating many world-shaking services yet in the most of these applications' private information has to be shared, which means that security breaches and illegal access to that information are real threats that have to be solved. Also mobile payment service is, one of the innovative services, has same issues which are real threats for users because mobile payment service sometimes requires user identification, an authentication procedure and confidential data sharing. Thus, an extra layer of security is needed in their communication and execution protocols. The Virtualization of Smart Cards (ViSCa), concept is a holistic approach and centralized management for a security system that pursues to provide a ubiquitous multi-device platform for the arrangement of mobile payment services that demand a powerful security protocol, both for the access & authentication and execution of its applications. In this sense, Virtualization of Smart Cards (ViSCa) offers full interoperability and full access from any user device without any loss of security. The concept prevents possible attacks by third parties, guaranteeing the confidentiality of personal data, bank accounts or private financial information. The Virtualization of Smart Cards (ViSCa) concept is split in two different phases: the execution of the user authentication protocol on the user device and the cloud architecture that executes the secure application. Thus, the secure service access is guaranteed at anytime, anywhere and through any device supporting previously required security mechanisms. The security level is improved by using virtualization technology in the cloud. This virtualization technology is used terminal virtualization to virtualize smart card hardware and thrive to manage virtualized smart cards as a whole, through mobile cloud technology in Virtualization of Smart Cards (ViSCa) platform-based mobile payment service. This entire process is referred to as Smart Card as a Service (SCaaS). Virtualization of Smart Cards (ViSCa) platform-based mobile payment service virtualizes smart card, which is used as payment mean, and loads it in to the mobile cloud. Authentication takes place through application and helps log on to mobile cloud and chooses one of virtualized smart card as a payment method. To decide the scope of the research, which is comparing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service with other similar cases, we categorized the prior researches' mobile payment service groups into distinct feature and service type. Both groups store credit card's data in the mobile device and settle the payment process at the offline market. By the location where the electronic financial transaction information (data) is stored, the groups can be categorized into two main service types. First is "App Method" which loads the data in the server connected to the application. Second "Mobile Card Method" stores its data in the Integrated Circuit (IC) chip, which holds financial transaction data, which is inbuilt in the mobile device secure element (SE). Through prior researches on accept factors of mobile payment service and its market environment, we came up with six key factors of comparative analysis which are economic, generality, security, convenience(ease of use), applicability and efficiency. Within the chosen group, we compared and analyzed the selected cases and Virtualization of Smart Cards (ViSCa) platform-based mobile payment service.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.