• Title/Summary/Keyword: Intelligent Vehicles

Search Result 770, Processing Time 0.032 seconds

The Architecture of an Intelligent Digital Twin for a Cyber-Physical Route-Finding System in Smart Cities

  • Habibnezhad, Mahmoud;Shayesteh, Shayan;Liu, Yizhi;Fardhosseini, Mohammad Sadra;Jebelli, Houtan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.510-519
    • /
    • 2020
  • Within an intelligent automated cyber-physical system, the realization of the autonomous mechanism for data collection, data integration, and data analysis plays a critical role in the design, development, operation, and maintenance of such a system. This construct is particularly vital for fault-tolerant route-finding systems that rely on the imprecise GPS location of the vehicles to properly operate, timely plan, and continuously produce informative feedback to the user. More essentially, the integration of digital twins with cyber-physical route-finding systems has been overlooked in intelligent transportation services with the capacity to construct the network routes solely from the locations of the operating vehicles. To address this limitation, the present study proposes a conceptual architecture that employs digital twin to autonomously maintain, update, and manage intelligent transportation systems. This virtual management simulation can improve the accuracy of time-of-arrival prediction based on auto-generated routes on which the vehicle's real-time location is mapped. To that end, first, an intelligent transportation system was developed based on two primary mechanisms: 1) an automated route finding process in which predictive data-driven models (i.e., regularized least-squares regression) can elicit the geometry and direction of the routes of the transportation network from the cloud of geotagged data points of the operating vehicles and 2) an intelligent mapping process capable of accurately locating the vehicles on the map whereby their arrival times to any point on the route can be estimated. Afterward, the digital representations of the physical entities (i.e., vehicles and routes) were simulated based on the auto-generated routes and the vehicles' locations in near-real-time. Finally, the feasibility and usability of the presented conceptual framework were evaluated through the comparison between the primary characteristics of the physical entities with their digital representations. The proposed architecture can be used by the vehicle-tracking applications dependent on geotagged data for digital mapping and location tracking of vehicles under a systematic comparison and simulation cyber-physical system.

  • PDF

Security Trends for Autonomous Driving Vehicle (자율주행 자동차 보안기술 동향)

  • Kwon, H.C.;Lee, S.J.;Choi, J.Y.;Chung, B.H.;Lee, S.W.;Nah, J.C.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.1
    • /
    • pp.78-88
    • /
    • 2018
  • As the traffic environment gradually changes to autonomous driving and intelligent transport systems, vehicles are becoming increasingly complicated and intelligent, and their connectivity is greatly expandinged. As a result, attack vectors of such vehicles increasing, and security threats further expanding. Currently, various solutions for vehicle security are being developed and applied, but the damage caused by cyber attacks is still increasing. In recent years, vehicles such as the Tesla Model S and Mitsubishi Outlander have been hacked and remotely controlled by an attacker. Therefore, there is a need for advanced security technologies to cope with increasingly intelligent and sophisticated automotive cyber attacks. In this article, we introduce the latest trends of autonomous vehicles and their security threats, as well as the current status and issues of security technologies to cope with them.

Authentication Scheme using Biometrics in Intelligent Vehicle Network (지능형 자동차 내부 네트워크에서 생체인증을 이용한 인증기법)

  • Lee, Kwang-Jae;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • Studies on the intelligent vehicles that are fused with IT and intelligent vehicle technologies are currently under active discussion. And many new service models for them are being developed. As intelligent vehicles are being actively developed, a variety of wireless services are support. As such intelligent vehicles use wireless network, they are exposed to the diverse sources of security risk. This paper aims to examine the factors to threaten intelligent vehicle, which are usually intruded through network system and propose the security solution using biometric authentication technique. The proposed security system employs biometric authentication technique model that can distinguish the physical characteristics of user.

DEVELOPMENT OF AN INTELLIGENT ULTRASONIC EVALUATION SYSTEM WITH A MULTI-AXIS PORTABLE SCANNER

  • Sung-Jin Song;Hak-Joon Kim;Won-Suk Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.167-176
    • /
    • 1996
  • Flaw classification and sizing are very essential issues in quantitative ultrasonic nondestructive evaluation of various materials and structures including weldments. For performing of these tasks in an automated fashion, we are developing an intelligent ultrasonic evaluation system with a multi-axis portable scanner which can do consistent and efficient acquisition and processing of ultrasonic flaw signals. Here we present our efforts to develop of this intelligent system including design of the portable scanner, acquisition and processing of ultrasonic flaw signals, display of pseudo 3-D image of flaws, and classification and sizing of flaws in weldments.

  • PDF

A Review on the Usage of RTKLIB for Precise Navigation of Unmanned Vehicles

  • Lim, Cheolsoon;Lee, Yongjun;Cho, Am;Park, Byungwoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.243-251
    • /
    • 2021
  • Real-Time Kinematic (RTK) is a phase-based differential GNSS technique and uses additional observations from permanent reference stations to mitigate or eliminate effects like atmospheric delays or satellite clocks and orbit errors. In particular, as the position accuracy required in the fields of autonomous vehicles and drones is gradually increasing, the demand for RTK-based precise navigation that can provide cm-level position is increasing. Recently, with the rapid growth of the open-source software market, the use of open-source software for building navigation system of unmanned vehicles, which is difficult to mount an expensive GNSS receivers, is gradually increasing. RTKLIB is an open-source software package that can perform RTK positioning and is widely used for research and education purposes. However, since the performance and stability of RTK algorithm of RTKLIB is inevitably inferior to that of commercial GNSS receivers, users need to verify whether RTKLIB can satisfy the navigation performance requirements of unmanned vehicles. Therefore, in this paper, the performance evaluation of the RTK positioning algorithm of RTKLIB was performed using GNSS observation data acquired in a dynamic environment. Therefore, in this paper, the RTK positioning performance of RTKLIB was evaluated using GNSS observation data acquired in a dynamic environment. Our results show that the current RTK algorithm of RTKLIB is not suitable for precise navigation of unmanned vehicles.

A Fuzzy Traffic Controller Considering Spillback on Crossroads

  • Park, Wan-Kyoo;Lee, Sung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In this paper, we propose a fuzzy traffic controller that is able to cope with traffic congestion appropriately. In order to consider such situation as loss of green time caused by spillback of upper crossroad, it imports a degree of traffic congestion of upper roads which vehicles on a crossroad are to proceed to. We constructed the equal-partitioned fuzzy traffic controller that uses the membership functions of the same size and shape, and modified the size and shape, and modified the size and shape of its membership functions by the membership function modification algorithm. In experiment, we compared and analyzed the fixed signal controller, the fuzzy traffic controller with the membership of the same size and shape, and the modified fuzzy traffic controller by using the delay time, the proportion of entered vehicles to occurred vehicles and the proportion of passed vehicles to entered vehicles. As a result of experiment, the modified fuzzy controller showed more enhanced performance than others.

  • PDF

Protecting Privacy of User Data in Intelligent Transportation Systems

  • Yazed Alsaawy;Ahmad Alkhodre;Adnan Abi Sen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.163-171
    • /
    • 2023
  • The intelligent transportation system has made a huge leap in the level of human services, which has had a positive impact on the quality of life of users. On the other hand, these services are becoming a new source of risk due to the use of data collected from vehicles, on which intelligent systems rely to create automatic contextual adaptation. Most of the popular privacy protection methods, such as Dummy and obfuscation, cannot be used with many services because of their impact on the accuracy of the service provided itself, they depend on changing the number of vehicles or their physical locations. This research presents a new approach based on the shuffling Nicknames of vehicles. It fully maintains the quality of the service and prevents tracking users permanently, penetrating their privacy, revealing their whereabouts, or discovering additional details about the nature of their behavior and movements. Our approach is based on creating a central Nicknames Pool in the cloud as well as distributed subpools in fog nodes to avoid intelligent delays and overloading of the central architecture. Finally, we will prove by simulation and discussion by examples the superiority of the proposed approach and its ability to adapt to new services and provide an effective level of protection. In the comparison, we will rely on the wellknown privacy criteria: Entropy, Ubiquity, and Performance.

A Study of Authentication Scheme based on Personal Key for Safety Intelligent Vehicle (안전한 지능형 자동차를 위한 개인키 기반의 인증 기법에 관한 연구)

  • Lee, Keun-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.549-554
    • /
    • 2014
  • Studies on the intelligent vehicles that are converged with IT and vehicular technologies are currently under active discussion. A variety of communication technologies for safety intelligent vehicle services are support. As such intelligent vehicles use communication technologies, they are exposed to the diverse factors of security threats. To conduct intelligent vehicle security authentication solutions, there are some factors that can be adopted ownership, knowledge and biometrics[6,7]. This paper proposes to analyze the factors to threaten intelligent vehicle, which are usually intruded through communication network system and the security solution using biometric authentication scheme. This study proposed above user's biometrics information-based authentication scheme that can solve the anticipated problems with an intelligent vehicle, which requires a higher level of security than existing authentication solution.

The Real Time Vehicles Tracking and Intelligent Transportation Management System Using Smart Phone Application (스마트폰을 활용한 실시간 화물추적 및 지능형 수.배송 관리시스템)

  • Kim, Sung-Gyun;Byun, Hae-Gwon;Yoo, Woo-Sik;Choi, Jin-Suk
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.428-434
    • /
    • 2011
  • In these days, mobile technology such as smart phone and GPS have an effect on business processes of many companies especially a transportation company. The purpose of this paper is to present the development processes of real time vehicles tracking and intelligent TMS (Transportation Management System) using smart phone applications. The objective of this study is two-fold. The first is to redesign business process of the transportation company. Using BPR (business process re-engineering), we analyze current processes to find opportunities for improvement redefining processes after adopting mobile technology precisely. The second is to develop the real time vehicles tracking and intelligent TMS. Proposed system consists of four parts : (1) intelligent TMS(web system) (2) real time vehicle tracking application for TMS (3) real time tracking application for customer (4) salesman supporting application. Developed system was tested at the transportation company and was found to be an useful system.