• Title/Summary/Keyword: Intelligent Vehicle Information System

Search Result 441, Processing Time 0.026 seconds

Autonomous Vehicle Situation Information Notification System (자율주행차량 상황 정보 알림 시스템)

  • Jinwoo Kim;Kitae Kim;Kyoung-Wook Min;Jeong Dan Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.216-223
    • /
    • 2023
  • As the technology and level of autonomous vehicles advance and they drive in more diverse road environments, an intuitive and efficient interaction system is needed to resolve and respond to the situations the vehicle faces. The development of driving technology from the perspective of autonomous driving has the ultimate goal of responding to situations involving humans or more. In particular, in complex road environments where mutual concessions must be made, the role of a system that can respond flexibly through efficient communication methods to understand each other's situation between vehicles or between pedestrians and vehicles is important. In order to resolve the status of the vehicle or the situation being faced, the provision and method of information must be intuitive and the efficient operation of an autonomous vehicle through interaction with intention is required. In this paper, we explain the vehicle structure and functions that can display information about the situation in which the autonomous vehicle driving in a living lab can drive stably and efficiently in a diverse and complex environment.

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

Development of Vehicle Environment for Real-time Driving Behavior Monitoring System (실시간 운전 특성 모니터링 시스템을 위한 차량 환경 개발)

  • Kim, Man-Ho;Son, Joon-Woo;Lee, Yong-Tae;Shin, Sung-Heon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs) that offer a significant enhancement of safety and convenience to drivers and passengers. However, unsuitable design of HMI (Human Machine Interface) must increase driver distraction and workload, which in turn increase the chance of traffic accidents. Distraction in particular often occurs under a heavy driving workload due to multitasking with various electronic devices like a cell phone or a navigation system while driving. According to the 2005 road traffic accidents in Korea report published by the ROad Traffic Authority (ROTA), more than 60% of the traffic accidents are related to driver error caused by distraction. This paper suggests the structure of vehicle environment for real-time driving behavior monitoring system while driving which is can be used the driver workload management systems (DWMS). On-road experiment results showed the feasibility of the suggested vehicle environment for driving behavior monitoring system.

An Implementation of Monitoring System of Vehicle Using CAN Communication and Embedded System (Controller Area Network (CAN) 통신과 임베디드 시스템을 이용한 자동차 감시 시스템 구현)

  • Yang, Seung-Hyun;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2690-2692
    • /
    • 2005
  • CAN communication can minimize the interfacing lines between equipments because it is composed of only the input and output lines, also is used for automatic system including vehicle, aircraft, railway vehicles and robot because the reliability of data is high by the capability of data-related error detect and correcting function. It can also improve the low-reliable and inefficient system which is composed of the existing Wiring Harness(W/H), so in case of vehicle, it is used in place of the present ECU as the new electro-control unit. In this paper, we constructed the electro-control unit of vehicle by using CAN communication and implemented system that could monitor the condition of vehicle through the web or mobile by connecting the electro-control unit to imbedded system. Such a system is expected to be helpful to the intelligent vehicle and the adoption of ACC(Adaptive Cruise Control).

  • PDF

Development of Vehicle Environment for Field Operational Test Data Base of Driver-vehicle's Behaviour (운전자 거동에 대한 필드 데이터베이스 구축을 위한 차량 환경 개발)

  • Kim, Jinyong;Jeong, Changhyun;Jeong, Minji;Jung, Dohyun;Woo, Jinmyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.

Implementation of Road Weather Information System Supporting Intelligent Transportation Systems Based on USN (센서 네트워크 기반의 지능형 교통 시스템 지원을 위한 RWIS 구현)

  • Park, Hyun-Moon;Park, Soo-Huyn;Park, Woo-Chool;Seo, Hae-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.485-492
    • /
    • 2010
  • Intelligent Transport System(ITS) has been studied in various systems, such as road environment information offering, vehicle short-range wireless/wire communication, vehicle collision preventing and pedestrian safety offering systems. Related to this, the USN technology based on the sensing accuracy for motorists and pedestrians safety, the information reliability, the maintenance and convenience for Sensor Network is highlighted. This study uses various sensors to construct USN to the road, and connect it to the developed RSU so it collects the real-time road environment information and offers it to OBU and Traffic Control Surveillance Center with Road Weather Information System. RSU collects roadside information for driver's safety and analyzes it to offer IP and beacon service according to the service priority to OBU & upper layer terminal. In the upper layer terminal it is developed the IP based Settop Box application program to offer the urban traffic information & road environment, and environment sensor error, etc. Finally, RWIS develops the real-time collection of roadside information to complement the driver's safety to the intelligent traffic system, and presents various service modes with technology convergence.

Development of a High-Performance Vehicle Imaging Information System for an Efficient Vehicle Imaging Stabilization (효율적인 차량 영상 안정화를 위한 고성능 차량 영상 정보 시스템 개발)

  • Hong, Sung-Il;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.78-86
    • /
    • 2013
  • In this paper, we propose design of a high-performance vehicle imaging information system for an efficient vehicle imaging stabilization. The proposed system was designed the algorithm by divided as motion estimation and motion compensation. The motion estimation were configured as local motion vector estimation and irregular local motion vector detection, global motion vector estimation. The motion compensation was corrected for the four directions for compensate to the shake of vehicle video image using estimate GMV. The designed algorithm were designed the motion compensation technology chip by applied to IP for vehicle imaging stabilization. In this paper, the experimental results of the proposed vehicle imaging information system were proved to the effectiveness by compared with other methods, because imaging stabilization of moving vehicle was not used of memory by processing real-time. Also, it could be obtained to reduction effect of calculation time by arithmetic operation through to block matching.

Age-related Deficits in Response Characteristics on Safety Warning of Intelligent Vehicle (지능형 자동차의 안전 경고음에 대한 고령운전자의 반응 특성)

  • Kim, Man-Ho;Lee, Yong-Tae;Son, Joon-Woo;Jang, Chee-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.131-137
    • /
    • 2009
  • Recent technological advances made a vehicle more intelligent to increase safety and comfort. An intelligent vehicle provides drivers with safety warning information through audible sounds, visual displays, and tactile devices. However, elderly drivers have been known to decrease the physical and cognitive abilities such as muscular strength, hearing, eyesight, short term memory, and spatial perception. Therefore, possible age-related deficits should be considered to design an effective warning system. This paper aims to evaluate the impact of advancing age on response performance on audible safety warnings which are widely used for alerting driving hazards. In order to understand the effect of age-related hearing loss and movement slowing, three sound characteristics (frequency, intensity, and period) and three age groups (younger, middle, and older) are considered. Data was drawn from 38 drivers who drove a simulated rural road in a driving simulator. Experimental results show that age influences driver's response performance. In conclusion, the appropriate range of a warning sound is suggested.

A Hardware/Software Codesign for Image Processing in a Processor Based Embedded System for Vehicle Detection

  • Moon, Ho-Sun;Moon, Sung-Hwan;Seo, Young-Bin;Kim, Yong-Deak
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.27-31
    • /
    • 2005
  • Vehicle detector system based on image processing technology is a significant domain of ITS (Intelligent Transportation System) applications due to its advantages such as low installation cost and it does not obstruct traffic during the installation of vehicle detection systems on the road[1]. In this paper, we propose architecture for vehicle detection by using image processing. The architecture consists of two main parts such as an image processing part, using high speed FPGA, decision and calculation part using CPU. The CPU part takes care of total system control and synthetic decision of vehicle detection. The FPGA part assumes charge of input and output image using video encoder and decoder, image classification and image memory control.

A Study on Distributed Message Allocation Method of CAN System with Dual Communication Channels (중복 통신 채널을 가진 CAN 시스템에서 분산 메시지 할당 방법에 관한 연구)

  • Kim, Man-Ho;Lee, Jong-Gap;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1018-1023
    • /
    • 2010
  • The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.